Viral infections remain a serious health challenge, as dramatically exposed by the recent COVID-19 pandemic caused by the SARS-CoV-2 virus that has made mandatory the availability of effective antiviral measures. Given the central role of the spike protein in the process of infection, it has been soon taken in consideration as main target for the development of new SARS-CoV-2 treatments. To pursue a comprehensive and molecularly informed antiviral strategy in my PhD project I’ve adopted a combined approach consisting in computational studies (molecular modelling) and experimental macromolecular binding analysis (surface plasmon resonance, SPR). The exploitation of these two techniques offers valuable insights into the structure, behaviour and interactions of spike and host structures involved in SARS-CoV-2 infection, providing a solid foundation for the design of innovative therapeutic interventions. In a first phase, I’ve performed computational simulations to assess the impact of various mutations on the structure of spike as to provide a deeper knowledge of the intricate structure/function relationship of the spike protein and to identify key spike domains whose targeting would possibly bring to its inhibition/inactivation. With this information at hand, I’ve started a second phase devoted to the computational design and experimental evaluation of different antiviral strategies aimed at inhibiting the entry of the SARS-CoV-2 virus into host cells. In this frame, I’ve contributed to a study that has shed a light on the molecular bases of SARS-CoV-2 inactivation by means of UV-C light irradiation: coincident computational predictions and SPR analysis results revealed that UV-C light causes the disruption of a specific disulfide bridge within the spike protein, reducing its binding to its ACE2 receptor present on host cells. In turn, these results pointed to the identified disulfide bridge as a promising pharmacological target to inactivate spike protein. To this aim, a drug repositioning approach was applied to select compounds capable of replicating the effects of UV-C with therapeutic potential, a task that was successfully completed with the identification of a candidate molecule that is currently under experimental validation. Also, two other types of compounds, namely heparin-like K5 polysaccharides and dendrimers have been evaluated for their capacity to interfere with the interaction of SARS-CoV2 or herpes simplex virus host cell heparan sulfate proteoglycans (HSPGs), that is crucial for the infection process of different virus species and is highly conserved among the various SARS-CoV2 variants. These studies yielded promising results that surely deserve further development. Comprehensively these studies confirmed the importance of computational studies at speeding up the drug discovery process for COVID-19. With this in mind, I’ve spent six month at Professor Vendruscolo's laboratory in the Department of Chemistry at the University of Cambridge to work with an important advanced computational technique, namely the Metadynamic Electron Microscopy Metainference (MEMMI) that is crucial for a detailed analysis of protein dynamics that is in turn required for the identification of new drugs and the characterization of their mechanisms of action with increasing precision, with the intention to exploit it in the identification of spike inhibitors to be developed in COVID-19 drugs.
Le infezioni virali rimangono una seria sfida per la salute, come è stato evidenziato drammaticamente dalla recente pandemia di COVID-19 causata dal virus SARS-CoV-2, rendendo impellente la disponibilità di misure antivirali efficaci. Dato il ruolo centrale della proteina spike nel processo di infezione, essa è stata facilmente identificata come principale bersaglio per lo sviluppo di nuovi trattamenti per il SARS-CoV-2. Nel mio progetto di dottorato, con lo scopo di valutare strategie antivirali basate su meccanismi di azione a livello molecolare, ho adottato un approccio combinato caratterizzato da studi computazionali (modellazione molecolare) e analisi sperimentali dell’interazione macromolecolare (surface plasmon resonance, SPR). La combinazione di queste due tecniche offre preziose informazioni sulla struttura, il comportamento e le interazioni delle strutture coinvolte nell'infezione da SARS-CoV-2, fornendo una solida base per la progettazione di trattamenti terapeutici innovativi. Nella prima fase del progetto, ho effettuato simulazioni computazionali per valutare l'impatto di diverse mutazioni sulla struttura della proteina spike, ottenendo una conoscenza più approfondita della complessa relazione tra la sua struttura e funzione. Con queste informazioni a disposizione, ho avviato una seconda fase dedicata all’analisi computazionale e alla valutazione sperimentale di diverse strategie antivirali volte a inibire l'ingresso del virus SARS-CoV-2 nelle cellule ospiti. In questo contesto, ho contribuito a uno studio che ha portato all’identificazione delle basi molecolari sottostanti all’inattivazione di SARS-CoV-2 mediante esposizione a luce UV-C. I risultati ottenuti tramite studi computazionali e l’analisi SPR hanno rivelato che la luce UV-C provoca la rottura di un ponte disolfuro specifico all'interno della proteina spike, producendo effetti allosterici sul dominio RBD, riducendo così la sua affinità di legame al recettore ACE2 presente sulle cellule ospiti. A loro volta, questi risultati hanno indicato il ponte disolfuro identificato come un promettente bersaglio farmacologico per inattivare la proteina spike. A questo scopo, è stata applicato un approccio di drug repositioning per selezionare composti in grado di replicare gli effetti della luce UV-C ma con scopo terapeutico. Questo obbiettivo è stato raggiunto con successo con l'identificazione di una molecola attualmente in fase di convalida sperimentale. Per affrontare la necessità di sviluppare strategie antivirali in grado di combattere un'ampia gamma di virus sono state esaminate due categorie di molecole in grado di interferire con la capacità conservata dei virus di interagire con gli heparan sulfate proteoglycans (HSPGs) presenti sulla superficie delle cellule ospiti. Le molecole studiate includono i polisaccaridi analoghi all'eparina, noti come K5, e i dendrimeri. I risultati ottenuti sono promettenti e sicuramente meritano ulteriori sviluppi. In fine, ho trascorso sei mesi nel laboratorio del Professor Vendruscolo presso il Dipartimento di Chimica dell'Università di Cambridge per apprendere un avanzato metodo computazionale noto come "Metadynamic Electron Microscopy Metainference" (MEMMI). Questo metodo è essenziale per condurre un'analisi dettagliata della dinamica delle proteine, una caratteristica fondamentale per identificare nuovi farmaci e per comprenderne con sempre maggiore precisione i meccanismi d'azione. Questa conoscenza ottenuta potrà essere sfruttata per approfondire la ricerca di agenti antivirali contro SARS-CoV-2.
Exploring alternative antiviral strategies: a complementary study of SARS-CoV-2 spike glycoprotein through computational studies and surface plasmon analysis / Milanesi, Maria. - (2024 Feb 16).
Exploring alternative antiviral strategies: a complementary study of SARS-CoV-2 spike glycoprotein through computational studies and surface plasmon analysis.
MILANESI, MARIA
2024-02-16
Abstract
Viral infections remain a serious health challenge, as dramatically exposed by the recent COVID-19 pandemic caused by the SARS-CoV-2 virus that has made mandatory the availability of effective antiviral measures. Given the central role of the spike protein in the process of infection, it has been soon taken in consideration as main target for the development of new SARS-CoV-2 treatments. To pursue a comprehensive and molecularly informed antiviral strategy in my PhD project I’ve adopted a combined approach consisting in computational studies (molecular modelling) and experimental macromolecular binding analysis (surface plasmon resonance, SPR). The exploitation of these two techniques offers valuable insights into the structure, behaviour and interactions of spike and host structures involved in SARS-CoV-2 infection, providing a solid foundation for the design of innovative therapeutic interventions. In a first phase, I’ve performed computational simulations to assess the impact of various mutations on the structure of spike as to provide a deeper knowledge of the intricate structure/function relationship of the spike protein and to identify key spike domains whose targeting would possibly bring to its inhibition/inactivation. With this information at hand, I’ve started a second phase devoted to the computational design and experimental evaluation of different antiviral strategies aimed at inhibiting the entry of the SARS-CoV-2 virus into host cells. In this frame, I’ve contributed to a study that has shed a light on the molecular bases of SARS-CoV-2 inactivation by means of UV-C light irradiation: coincident computational predictions and SPR analysis results revealed that UV-C light causes the disruption of a specific disulfide bridge within the spike protein, reducing its binding to its ACE2 receptor present on host cells. In turn, these results pointed to the identified disulfide bridge as a promising pharmacological target to inactivate spike protein. To this aim, a drug repositioning approach was applied to select compounds capable of replicating the effects of UV-C with therapeutic potential, a task that was successfully completed with the identification of a candidate molecule that is currently under experimental validation. Also, two other types of compounds, namely heparin-like K5 polysaccharides and dendrimers have been evaluated for their capacity to interfere with the interaction of SARS-CoV2 or herpes simplex virus host cell heparan sulfate proteoglycans (HSPGs), that is crucial for the infection process of different virus species and is highly conserved among the various SARS-CoV2 variants. These studies yielded promising results that surely deserve further development. Comprehensively these studies confirmed the importance of computational studies at speeding up the drug discovery process for COVID-19. With this in mind, I’ve spent six month at Professor Vendruscolo's laboratory in the Department of Chemistry at the University of Cambridge to work with an important advanced computational technique, namely the Metadynamic Electron Microscopy Metainference (MEMMI) that is crucial for a detailed analysis of protein dynamics that is in turn required for the identification of new drugs and the characterization of their mechanisms of action with increasing precision, with the intention to exploit it in the identification of spike inhibitors to be developed in COVID-19 drugs.File | Dimensione | Formato | |
---|---|---|---|
PhD Tesi Milanesi corretto.pdf
embargo fino al 16/02/2025
Descrizione: Tesi
Tipologia:
Tesi di dottorato
Dimensione
4.42 MB
Formato
Adobe PDF
|
4.42 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.