The identification of plant species from RGB images is a challenge of growing importance in the field of biodiversity assessment. This study aims to develop an image pre-processing procedure that increases the accuracy of classification models applied to low-resolution plant images collected by RGB Unmanned aerial vehicles (UAVs). This procedure, based on contrast enhancement and superresolution techniques, has been successfully tested on RGB images collected in agroecosystems.

Increasing accuracy in classification models for the identification of plant species based on UAV images

Anna Simonetto
;
Girma Tariku;Gianni Gilioli
2023-01-01

Abstract

The identification of plant species from RGB images is a challenge of growing importance in the field of biodiversity assessment. This study aims to develop an image pre-processing procedure that increases the accuracy of classification models applied to low-resolution plant images collected by RGB Unmanned aerial vehicles (UAVs). This procedure, based on contrast enhancement and superresolution techniques, has been successfully tested on RGB images collected in agroecosystems.
2023
978-88-6952-170-6
File in questo prodotto:
File Dimensione Formato  
2023 - SDS.pdf

accesso aperto

Licenza: Creative commons
Dimensione 699.2 kB
Formato Adobe PDF
699.2 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/579605
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact