This paper introduces argumentative-generative models for statistical learning-i.e., generative statistical models seen from a Bayesian argumentation perspective-and shows how they support trustworthy artificial intelligence (AI). Generative Bayesian approaches are already very promising for achieving robustness against adversarial attacks, a fundamental component of trustworthy AI. This paper shows how Bayesian argumentation can help us achieve transparent assessments of epistemic uncertainty and testability of models, two necessary ingredients for trustworthy AI. We also discuss the limitations of this approach, notably those traditionally linked to Bayesian methods.

Supporting Trustworthy Artificial Intelligence via Bayesian Argumentation

Federico Cerutti
2022-01-01

Abstract

This paper introduces argumentative-generative models for statistical learning-i.e., generative statistical models seen from a Bayesian argumentation perspective-and shows how they support trustworthy artificial intelligence (AI). Generative Bayesian approaches are already very promising for achieving robustness against adversarial attacks, a fundamental component of trustworthy AI. This paper shows how Bayesian argumentation can help us achieve transparent assessments of epistemic uncertainty and testability of models, two necessary ingredients for trustworthy AI. We also discuss the limitations of this approach, notably those traditionally linked to Bayesian methods.
2022
978-3-031-08420-1
978-3-031-08421-8
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/576169
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact