Environmental pollution is one of the biggest issue in modern society. In particular, the most present pollutant in urban areas is particulate matter (PM) that is cause of concern as it can easily penetrate the respiratory system causing severe health problems. As PM concentrations often exceed limits imposed by legislation, in 2021 World Health Organization (WHO) imposed new and stricter limits to PM10 and PM2.5 concentrations. Several solutions have been proposed to reduce PM concentrations in cities, including the realization of a new and sustainable material, SUNSPACE (SUstaiNable materials Synthesized from by-Products and Alginates for Clean air and better Environment) realized with silica fume (SF) and low CO2 emissions processes. Its adsorption capacity was tested obtaining good results but, from a commercial development perspective, its dark color represents a limit. In this Ph.D. work, new SUNSPACE modification have been proposed to obtain a lighter colored material and to simplify the synthesis process by the elimination of the thermal treatment. The color change was obtained using another industrial by-product, the bottom ash (BA), residue of municipal waste combustion while the substitution of sodium bicarbonate (used as pore former in SUNSPACE synthesis) with hydrogen peroxide allowed to avoid the thermal treatment. Samples were fully characterized and tested to evaluate the adsorption capacity using for the first time an aerosol nanoparticle generator and a TiO2 suspension as PM source. The results obtained are encouraging for samples realized with SF and for SUNSPACE BA. On the contrary, samples realized with BA and hydrogen peroxide showed a water repellent behavior, studied with wettability tests. Results showed that the contact angle of these materials is above the hydrophobicity limit. Moreover, samples were also tested to photodegrade organic pollutants obtaining the best results for samples realized with BA, hydrogen peroxide and TiO2 (added during the samples’ preparation due to its good photocatalytic activity). Finally, the thermal treatment of SUNSPACE was changed with a microwave treatment that allows to improve the material sustainability and to speed up the treatment. Samples were characterized and tested using the aerosol nanoparticles generator. However, these are preliminary tests aimed at thinking about new possible applications of the material, for example to make outdoor vases that help trap the PM. In the last chapter, some works, carried out during COVID-19, were reported focusing on its consequences on various environmental aspects and on the extraction of raw materials.
L’inquinamento ambientale è uno degli argomenti più trattati al fine di trovare soluzioni efficaci a contrastarlo. L’inquinante più presente nelle aree urbane, e che desta la maggiore preoccupazione a causa della sua capacità di penetrare nel sistema respiratorio con gravi danni per la salute, è il particolato atmosferico (PM). Le concentrazioni di PM spesso superano i limiti imposti dalla normativa; nel 2021 l’Organizzazione Mondiale della Sanità (WHO) ha imposto nuovi e più restrittivi limiti alle concentrazioni di PM al fine di ridurne le concentrazioni in atmosfera. Fra le diverse soluzioni proposte per intrappolare il PM c’è la realizzazione di un nuovo e sostenibile materiale, chiamato SUNSPACE (SUstaiNable materials Synthesized from by-Products and Alginates for Clean air and better Environment) e realizzato a partire da uno scarto industriale, la silica fume (SF) con processi a basse emissioni di CO2. La sua capacità di cattura del PM è stata valutata effettuando numerosi test e ottenendo buoni risultati ma il suo colore scuro rappresenta un limite a un suo possibile sviluppo commerciale. In questa tesi di dottorato, sono state proposte delle soluzioni alternative per ottenere un materiale dal colore chiaro e per eliminare il trattamento termico semplificando la fase di realizzazione del materiale. Il primo punto è stato ottenuto utilizzando la bottom ash (BA), cenere proveniente dalla combustione dei rifiuti municipali negli inceneritori, mentre la sostituzione del bicarbonato di sodio (utilizzato la formazione dei pori) con il perossido d’idrogeno ha permesso di eliminare il trattamento termico. I campioni, caratterizzati, sono stati testati per valutarne la capacità di intrappolare il PM utilizzato un generatore di aerosol e TiO2 per simulare una fonte di PM. Buoni risultati sono stati ottenuti per i campioni realizzati con SF e per SUNSPACE BA mentre quelli realizzati con BA e perossido d’idrogeno hanno mostrato un comportamento idrorepellente che è stato studiato con delle prove di bagnabilità. I risultati hanno dimostrato che questi materiali hanno un angolo di contatto al di sopra del limite di idrofobicità. I campioni sono stati anche testati per foto degradare inquinanti organici ottenendo buoni risultati per i campioni realizzati con BA, perossido di idrogeno e TiO2 (ottimo foto catalizzatore, aggiunto durante la preparazione dei campioni). Infine, il trattamento termico di SUNSPACE è stato sostituito con un trattamento a microonde che permette di ridurre i tempi necessari alla preparazione del campione e migliorare la sua sostenibilità. I campioni sono stati caratterizzati e testati utilizzando il generatore di aerosol. Si tratta però di test preliminari volti a proporre nuove possibili applicazioni del materiale, ad esempio per realizzare vasi da esterno che aiutino a intrappolare il PM. Nell'ultimo capitolo sono stati riportati alcuni lavori, realizzati durante la COVID-19, e incentrati sulle sue conseguenze su vari aspetti ambientali e sull'estrazione di materie prime.
Design of porous materials derived from industrial non-hazardous waste powder for air particulate matter entrapment / Cornelio, Antonella. - (2023 Apr 17).
Design of porous materials derived from industrial non-hazardous waste powder for air particulate matter entrapment
CORNELIO, Antonella
2023-04-17
Abstract
Environmental pollution is one of the biggest issue in modern society. In particular, the most present pollutant in urban areas is particulate matter (PM) that is cause of concern as it can easily penetrate the respiratory system causing severe health problems. As PM concentrations often exceed limits imposed by legislation, in 2021 World Health Organization (WHO) imposed new and stricter limits to PM10 and PM2.5 concentrations. Several solutions have been proposed to reduce PM concentrations in cities, including the realization of a new and sustainable material, SUNSPACE (SUstaiNable materials Synthesized from by-Products and Alginates for Clean air and better Environment) realized with silica fume (SF) and low CO2 emissions processes. Its adsorption capacity was tested obtaining good results but, from a commercial development perspective, its dark color represents a limit. In this Ph.D. work, new SUNSPACE modification have been proposed to obtain a lighter colored material and to simplify the synthesis process by the elimination of the thermal treatment. The color change was obtained using another industrial by-product, the bottom ash (BA), residue of municipal waste combustion while the substitution of sodium bicarbonate (used as pore former in SUNSPACE synthesis) with hydrogen peroxide allowed to avoid the thermal treatment. Samples were fully characterized and tested to evaluate the adsorption capacity using for the first time an aerosol nanoparticle generator and a TiO2 suspension as PM source. The results obtained are encouraging for samples realized with SF and for SUNSPACE BA. On the contrary, samples realized with BA and hydrogen peroxide showed a water repellent behavior, studied with wettability tests. Results showed that the contact angle of these materials is above the hydrophobicity limit. Moreover, samples were also tested to photodegrade organic pollutants obtaining the best results for samples realized with BA, hydrogen peroxide and TiO2 (added during the samples’ preparation due to its good photocatalytic activity). Finally, the thermal treatment of SUNSPACE was changed with a microwave treatment that allows to improve the material sustainability and to speed up the treatment. Samples were characterized and tested using the aerosol nanoparticles generator. However, these are preliminary tests aimed at thinking about new possible applications of the material, for example to make outdoor vases that help trap the PM. In the last chapter, some works, carried out during COVID-19, were reported focusing on its consequences on various environmental aspects and on the extraction of raw materials.File | Dimensione | Formato | |
---|---|---|---|
Tesi Cornelio.pdf
accesso aperto
Descrizione: TESI
Tipologia:
Tesi di dottorato
Dimensione
5.59 MB
Formato
Adobe PDF
|
5.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.