Nanotechnological materials are synthetic materials with unique properties and behaviours that emerge on length scales from 1-100 nm. Research on this type of material is currently focused on their biotechnological and medical transition. These materials interact with biological systems at the molecular, cellular, organism and ecosystem levels. As natural organic nanoparticles, extracellular vesicles are the principal nano-exponents within the secretome. They evolved for cell-to-cell communication and carrying various biomolecules (e.g. proteins, lipids, and nucleic acids). Quickly, they emerged as promising nanoplatforms for many biomedical applications in diagnostics (e.g. liquid biopsy) and therapeutics (drug delivery systems, regenerative agents). Despite their enormous potential, their heterogeneity in size and surface composition, the high complexity of their biomolecular load and inefficient absorption by the recipient cells are the main obstacles to overcome to allow their translation into real biomedical applications. To address these crucial issues, multifunctional nanomaterials (e.g. superparamagnetic nanomaterials with their particular physical and chemical properties) can play fundamental roles by combining with the diagnostic and therapeutic properties of extracellular vesicles and generate next-generation hybrid nanomaterials, used in drug delivery, tissue engineering and regenerative medicine. The goal is to provide cutting-edge knowledge on extracellular vesicle production, isolation, characterisation and engineering. The engineering is obtained thanks to the innovative loading and surface modification (e.g. click chemistry) methods. The surface of the extracellular vesicles is modified with specific molecules that can direct the vesicles to defined targets. They can also be used as a means of delivering biomolecules or drugs. Combining the delivery properties of extracellular vesicles and the unique properties of synthetic nanomaterials make them exploitable for biomedical applications. In the first part of this PhD project, work focused on the hybrid nanoparticles (superparamagnetic nanoparticles and natural and synthetic organic lipid nanoparticles)production and characterisation. The identification of a defined protocol for synthesis and characterisation is essential to be able to verify the load. After running several loading protocols, the production yield of the hybrid nanoparticles was verified using two orthogonal techniques: I) resonance energy transfer (FRET) and II) a modified version of the colorimetric nanoplasmonic test (CONAN). In particular, this second test exploits the nanoplasmonic properties of gold nanoparticles to evaluate the coating of biological membranes on synthetic nanoparticles without any further treatment (e.g. staining or labelling). In the second part of this PhD project, work focused on engineering the surface of extracellular vesicles for specific targeting against a particular subtype of breast cancer. To modify these extracellular vesicles, it was necessary to optimise protocols for production, isolation and characterisation from different sources such as cell lines, plasma, serum and red blood cells. On these vesicles, the surface was functionalised with a monoclonal antibody called Cetuximab, which is currently used in the clinic for several types of tumours. Functionalisation (active and passive) was performed and compared with different functional tests such as surface plasmon resonance (on chip) and mitochondrial stress test, and cellular uptake test (in vitro).
I materiali nano ingegnerizzati sono materiali sintetici con proprietà e comportamenti unici che emergono su scale di lunghezza da 1 a 100 nm. Attualmente la ricerca su questo tipo di materiali è focalizzata sulla loro transizione biotecnologica e medica. Questi materiali interagiscono con i sistemi biologici a livello molecolare, cellulare, di organismo e di ecosistema. In quanto nano particelle organiche naturali, le vescicole extracellulari sono i principali nano-esponenti all'interno del secretoma. Si sono evoluti per la comunicazione cellula-cellula e trasportano varie biomolecole (ad esempio proteine, lipidi e acidi nucleici). Rapidamente, sono emerse come promettenti nano-piattaforme per molte applicazioni biomediche nella diagnostica (es. biopsia liquida) e nella terapia (sistemi di somministrazione di farmaci, agenti rigenerativi). Nonostante il loro enorme potenziale, la loro eterogeneità in dimensione e composizione superficiale, l'elevata complessità del loro carico biomolecole, l'assorbimento inefficiente da parte delle cellule riceventi costituiscono i principali ostacoli da superare per consentire la traslazione alle effettive applicazioni biomediche. Per affrontare queste questioni cruciali, nanomateriali multifunzionali (es. nanomateriali super paramagnetici con le loro particolari proprietà fisiche, chimiche) possono svolgere ruoli fondamentali combinandosi con le proprietà diagnostiche e terapeutiche delle vescicole extracellulari e generare nanomateriali ibridi di prossima generazione, utilizzati nella somministrazione di farmaci, nell'ingegneria dei tessuti e nella medicina rigenerativa. In questo lavoro l’obbiettivo è quello di fornire conoscenze all'avanguardia sulla produzione, sull'isolamento, la caratterizzazione delle vescicole extracellulari. Inoltre, grazie agli innovativi metodi di “targeting” molecolare, realizzati per esempio tramite “click chemistry”, la superficie delle vescicole extracellulari è modificata con molecole specifiche che possono indirizzare le vescicole verso specifici bersagli. Inoltre possono essere utilizzate come mezzo per la consegna di biomolecole o di farmaci. Unire le proprietà di trasporto delle vescicole extracellulari e le proprietà uniche dei nanomateriali sintetici renderle sfruttabili per le applicazioni biomediche. Nella prima parte di questo progetto di dottorato, il lavoro è stato focalizzato nella produzione e caratterizzazione di nano particelle ibride (nanoparticelle super paramagnetiche e nanoparticelle lipidiche organiche sia naturali che sintetiche). L'identificazione di un protocollo per la sintesi e la caratterizzazione è fondamentale per poter verificare il caricamento. Dopo aver eseguito diversi protocolli di caricamento, la resa di produzione delle nanoparticelle ibride è stata verificata utilizzando due tecniche ortogonali: I) il trasferimento di energia per risonanzala (FRET) e II) una versione modificata del saggio colorimetrico nanoplasmonico (CONAN). In particolare questo secondo saggio sfrutta le proprietà nanoplasmoniche delle nanoparticelle d'oro per valutare il rivestimento delle membrane biologiche sulle nanoparticelle sintetiche senza bisogno di nessun trattamento ulteriore (es. colorazione o marcatura). Nella seconda parte di questo progetto di dottorato, il lavoro si è concentrato sull'ingegnerizzazione della superficie delle vescicole extracellulari finalizzata al “targeting” specifico contro un particolare sottotipo di tumore al seno.... []
Extracellular vesicle engineering across length scales / Zenatelli, Rossella. - (2023 Feb 02).
Extracellular vesicle engineering across length scales
Zenatelli, Rossella
2023-02-02
Abstract
Nanotechnological materials are synthetic materials with unique properties and behaviours that emerge on length scales from 1-100 nm. Research on this type of material is currently focused on their biotechnological and medical transition. These materials interact with biological systems at the molecular, cellular, organism and ecosystem levels. As natural organic nanoparticles, extracellular vesicles are the principal nano-exponents within the secretome. They evolved for cell-to-cell communication and carrying various biomolecules (e.g. proteins, lipids, and nucleic acids). Quickly, they emerged as promising nanoplatforms for many biomedical applications in diagnostics (e.g. liquid biopsy) and therapeutics (drug delivery systems, regenerative agents). Despite their enormous potential, their heterogeneity in size and surface composition, the high complexity of their biomolecular load and inefficient absorption by the recipient cells are the main obstacles to overcome to allow their translation into real biomedical applications. To address these crucial issues, multifunctional nanomaterials (e.g. superparamagnetic nanomaterials with their particular physical and chemical properties) can play fundamental roles by combining with the diagnostic and therapeutic properties of extracellular vesicles and generate next-generation hybrid nanomaterials, used in drug delivery, tissue engineering and regenerative medicine. The goal is to provide cutting-edge knowledge on extracellular vesicle production, isolation, characterisation and engineering. The engineering is obtained thanks to the innovative loading and surface modification (e.g. click chemistry) methods. The surface of the extracellular vesicles is modified with specific molecules that can direct the vesicles to defined targets. They can also be used as a means of delivering biomolecules or drugs. Combining the delivery properties of extracellular vesicles and the unique properties of synthetic nanomaterials make them exploitable for biomedical applications. In the first part of this PhD project, work focused on the hybrid nanoparticles (superparamagnetic nanoparticles and natural and synthetic organic lipid nanoparticles)production and characterisation. The identification of a defined protocol for synthesis and characterisation is essential to be able to verify the load. After running several loading protocols, the production yield of the hybrid nanoparticles was verified using two orthogonal techniques: I) resonance energy transfer (FRET) and II) a modified version of the colorimetric nanoplasmonic test (CONAN). In particular, this second test exploits the nanoplasmonic properties of gold nanoparticles to evaluate the coating of biological membranes on synthetic nanoparticles without any further treatment (e.g. staining or labelling). In the second part of this PhD project, work focused on engineering the surface of extracellular vesicles for specific targeting against a particular subtype of breast cancer. To modify these extracellular vesicles, it was necessary to optimise protocols for production, isolation and characterisation from different sources such as cell lines, plasma, serum and red blood cells. On these vesicles, the surface was functionalised with a monoclonal antibody called Cetuximab, which is currently used in the clinic for several types of tumours. Functionalisation (active and passive) was performed and compared with different functional tests such as surface plasmon resonance (on chip) and mitochondrial stress test, and cellular uptake test (in vitro).File | Dimensione | Formato | |
---|---|---|---|
TESI DOTTORATO IN PRECISION MEDICINE_Rossella Zenatelli_Esse3.pdf
embargo fino al 02/02/2025
Descrizione: TESI
Tipologia:
Tesi di dottorato
Dimensione
9.83 MB
Formato
Adobe PDF
|
9.83 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.