Projections of glaciers’ retreat and earlier snowmelt driven by global warming could alter the hydro-glaciological regimes affecting not only the upstream watershed but also downstream areas. A large portion of Pakistan's water supply is generated by the melting of snow and ice in the mountainous regions of the Karakoram. However, climate change poses a high risk to these watersheds. Thus, quantifying these changes at the right time is an important challenge for water resources planners. The objective of this dissertation is to assess the effect of climate variability on the hydro-glaciological regime in the Upper Indus Basin (UIB) in the present and future projected climate. Chapter 1 compiles the high resolution precipitation climatology (1995-2017) of the UIB developed using the anomaly method and four gridded datasets (APHRODITE, CHIRPS, PERSIANN-CDR and ERA5) which are bias corrected with interpolated observations at seasonal and annual scale. The results indicate the better performance of bias corrected CHIRPS precipitation followed by ERA5; bias corrected CHIRPS precipitation datasets performed better in simulating precipitation with smaller RMSE, MAE, MAPE [%] and BIAS followed by ERA5. Precipitation and discharge revealed significant variability at the seasonal scale more than at annual scale. The rainfall and runoff relationship and annual runoff coefficients suggest the need of further investigation and monitoring about snow-glacier melt contribution in streamflow. Based on Chapter 1 outcomes, Chapter 2 employs the Physically Based Distributed Snow Land and Ice Model (PDSLIM), already tested in the Alps by Ranzi and Rosso (1991), Ranzi et al. (2010) and Grossi et al. (2013); Ranzi and Rosso (1991) for the Naltar catchment situated in the Hunza river basin (Pakistan) to simulate current and future hydro-glaciological regimes. The results exhibited very satisfactory performances of the model verified against satellite-based snow cover area for all simulated years with average coefficient of determination R2 = 0.96 and Nash-Sutcliffe Efficiency NSE= 0.95. Runoff simulations revealed good agreement with observed daily discharge obtained with mean NSE and KGE of 0.90 and 0.89. Chapter 3 employs the calibrated PDSLIM to examine future projections of glaciological-hydrological regimes for the two-time periods 2040-2059 and 2080-2099 under RCP 2.6, RCP 4.5 and RCP 8.5 scenarios. The projected simulations of the energy and mass balance indicate that snow and ice melt progression will consistently increase in both future time periods with an anticipation in the timing of the maximum snowmelt. Additionally, the rise in temperature is expected to have a substantial impact on peak hydrological regimes from one to two months earlier by 2090s over Naltar catchment. From the actual (-737 mm a-1) and projected mass balance estimates (-887 mm a-1 by 2050_4.5 scenario; -2018 mm a-1 for 2050_8.5 and -1154 mm a-1 by 2090_4.5; -2597 mm a-1 for 2090_8.5) and the MODIS and LANDSAT satellite images it appears that also in the Naltar catchment glaciers are going to retreat fast indicating an exception to the so-called ‘Karakoram anomaly’, a conjecture of a slower retreat of glaciers in the region because of accumulated precipitation at high altitudes . Overall, PDSLIM performs well for the current and, likely, future glacio-hydrological dynamics and sets a strong foundation for the potential usage of distributed energy balance approach in the glacierized catchments of High Mountain Asia (HMA) including Karakoram and Himalaya.
Il ritiro dei ghiacciai osservato a scala planetaria e gli effetti del riscaldamento globale che accelererà la fusione dei ghiacciai e delle nevi stagionali andranno ad alterare alterare i regimi idrologici che interessano non solo i bacini montani, ma anche le aree a valle. Gran parte dell'approvvigionamento idrico del Pakistan è generato dalla fusione nivale e glaciale nelle regioni montuose del Karakoram. Tuttavia, il cambiamento climatico rappresenta un rischio elevato per questi bacini idrografici. Pertanto, quantificare questi cambiamenti prevedibili è una sfida importante per la gestione e la pianificazione delle risorse idriche. L'obiettivo di questa tesi è valutare l'effetto della variabilità climatica sul regime idrologico e glaciologico nell’Alto Bacino dell’Indo (nel seguito Upper Indus Basin-UIB). Il primo capitolo di questa tesi di dottorato presenta la climatologia delle precipitazioni ad alta risoluzione nell’UIB basata sul metodo delle anomalie (1995-2017) e sviluppato utilizzando quattro set di dati su griglia (APHRODITE, CHIRPS, PERSIANN-CDR e ERA5) su scala stagionale e annuale. I risultati indicano le migliori prestazioni della precipitazione stimata con il dataset CHIRPS con correzione del bias seguito dalle rianalisi del modello ERA5; infatti il set di dati di precipitazione CHIRPS con correzione del bias ha ottenuto risultati migliori nella simulazione delle precipitazioni con RMSE, MAE, MAPE [%] e BIAS più piccoli seguiti da ERA5. Sulla base dei risultati del Capitolo 1, nel Capitolo 2 si utilizza il modello distribuito di bilancio energetico Physically Based Distributed Snow Land and Ice Model (PDSLIM), già testato nelle Alpi da Ranzi e Rosso (1991), Ranzi et al. (2010) e Grossi et al. (2013) per il bacino del Naltar situato nel bacino del fiume Hunza, in Pakistan, per simulare i regimi idro-glaciologici attuali e futuri. I risultati hanno mostrato prestazioni molto soddisfacenti del modello verificato rispetto all'area di copertura nevosa (Snow Cover Area) stimata dalle immagini del sensore satellitare LANDSAT-TM e Terra/Aqua-MODIS per tutti gli anni simulati con coefficiente medio di determinazione R2 = 0,96 e Nash-Sutcliffe Efficiency NSE= 0,95. Le simulazioni di deflusso hanno rivelato un buon accordo con la portata giornaliera osservata ottenuta con NSE e Kling-Gupta Efficiency (KGE) medi di 0,90 e 0,89. L'analisi della composizione del deflusso ha rivelato che la componente sotterranea, con risposta lenta, è la componente principale, seguita dal deflusso del ghiacciaio e dal deflusso superficiale. Nel Capitolo 3 si illustra l’impiego del modello PDSLIM calibrato per esaminare le proiezioni future dei regimi glaciologico-idrologici per i due periodi temporali (2040-2059) e (2080-2099) negli scenari RCP 2.6, RCP 4.5 e RCP 8.5. Le simulazioni previste del bilancio di massa ed energetico indicano che la progressione della fusione della neve e del ghiaccio aumenterà costantemente in entrambi i periodi di tempo futuri con un'anticipazione dei tempi della massima fusione nivale. Dalle stime del bilancio di massa attuale (-737 mm anno-1) e previsto (-887 mm anno-1 per lo scenario 2050_4.5; -2018 mm anno-1 per il 2050_8.5 e -1154 mm anno-1 entro il 2090_4.5 ; -2597 mm anno-1 per 2090_8.5) e dalle immagini satellitari MODIS e LANDSAT sembra che anche nel bacino del Naltar i ghiacciai stiano per ritirarsi rapidamente indicando un'eccezione alla cosiddetta 'anomalia del Karakoram', una congettura di un rallentamento del ritiro dei ghiacciai nella regione a causa dell'accumulo nivale indotto dalle precipitazioni ad alta quota. Nel complesso il modello PDSLIM mostra prestazioni molto buonei nel simulare le dinamiche glacio-idrologiche attuali e, probabilmente, anche quelle future e pone una solida base per il potenziale utilizzo dell'approccio del bilancio energetico distribuito nei bacini glaciali del Karakorum e del’Hymalaia.
Evaluation of the effect of climate variability on the hydro-glaciological regime in the Upper Indus Basin / Liaqat, MUHAMMAD USMAN. - (2023 Jan 10).
Evaluation of the effect of climate variability on the hydro-glaciological regime in the Upper Indus Basin
LIAQAT, MUHAMMAD USMAN
2023-01-10
Abstract
Projections of glaciers’ retreat and earlier snowmelt driven by global warming could alter the hydro-glaciological regimes affecting not only the upstream watershed but also downstream areas. A large portion of Pakistan's water supply is generated by the melting of snow and ice in the mountainous regions of the Karakoram. However, climate change poses a high risk to these watersheds. Thus, quantifying these changes at the right time is an important challenge for water resources planners. The objective of this dissertation is to assess the effect of climate variability on the hydro-glaciological regime in the Upper Indus Basin (UIB) in the present and future projected climate. Chapter 1 compiles the high resolution precipitation climatology (1995-2017) of the UIB developed using the anomaly method and four gridded datasets (APHRODITE, CHIRPS, PERSIANN-CDR and ERA5) which are bias corrected with interpolated observations at seasonal and annual scale. The results indicate the better performance of bias corrected CHIRPS precipitation followed by ERA5; bias corrected CHIRPS precipitation datasets performed better in simulating precipitation with smaller RMSE, MAE, MAPE [%] and BIAS followed by ERA5. Precipitation and discharge revealed significant variability at the seasonal scale more than at annual scale. The rainfall and runoff relationship and annual runoff coefficients suggest the need of further investigation and monitoring about snow-glacier melt contribution in streamflow. Based on Chapter 1 outcomes, Chapter 2 employs the Physically Based Distributed Snow Land and Ice Model (PDSLIM), already tested in the Alps by Ranzi and Rosso (1991), Ranzi et al. (2010) and Grossi et al. (2013); Ranzi and Rosso (1991) for the Naltar catchment situated in the Hunza river basin (Pakistan) to simulate current and future hydro-glaciological regimes. The results exhibited very satisfactory performances of the model verified against satellite-based snow cover area for all simulated years with average coefficient of determination R2 = 0.96 and Nash-Sutcliffe Efficiency NSE= 0.95. Runoff simulations revealed good agreement with observed daily discharge obtained with mean NSE and KGE of 0.90 and 0.89. Chapter 3 employs the calibrated PDSLIM to examine future projections of glaciological-hydrological regimes for the two-time periods 2040-2059 and 2080-2099 under RCP 2.6, RCP 4.5 and RCP 8.5 scenarios. The projected simulations of the energy and mass balance indicate that snow and ice melt progression will consistently increase in both future time periods with an anticipation in the timing of the maximum snowmelt. Additionally, the rise in temperature is expected to have a substantial impact on peak hydrological regimes from one to two months earlier by 2090s over Naltar catchment. From the actual (-737 mm a-1) and projected mass balance estimates (-887 mm a-1 by 2050_4.5 scenario; -2018 mm a-1 for 2050_8.5 and -1154 mm a-1 by 2090_4.5; -2597 mm a-1 for 2090_8.5) and the MODIS and LANDSAT satellite images it appears that also in the Naltar catchment glaciers are going to retreat fast indicating an exception to the so-called ‘Karakoram anomaly’, a conjecture of a slower retreat of glaciers in the region because of accumulated precipitation at high altitudes . Overall, PDSLIM performs well for the current and, likely, future glacio-hydrological dynamics and sets a strong foundation for the potential usage of distributed energy balance approach in the glacierized catchments of High Mountain Asia (HMA) including Karakoram and Himalaya.File | Dimensione | Formato | |
---|---|---|---|
Liaqat_Final Thesis Work.pdf
embargo fino al 10/01/2025
Descrizione: Tesi
Tipologia:
Tesi di dottorato
Dimensione
8.34 MB
Formato
Adobe PDF
|
8.34 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.