The proposed thesis comes from well-defined biological motivations, aiming at providing a characterization of endothelial cell behavior in tumor angiogenesis. Several multi-physics frameworks are introduced for applications in the realm of mechanobiology, as well as in many other research areas. Angiogenesis is a well known physiological or pathological multistep process that consists in the formation of new blood vessels from preexisting ones. Covering the inner walls of blood vessels, endothelial cells are affected by extracellular stimuli released by tumor cells, and respond via relocation of receptor proteins along their membrane, collective migration and reorganization in novel vessels. The role of receptor dynamics and cell mechanics in response to extracellular stimuli is therefore object of great interest, as they are pivotal processes at the early stages of angiogenesis. Cell structural functions, allowing the occurrence of well known processes such as cell adhesion and spreading, motility and migration, are ascribed to the generation and reorganization of the cytoskeletal contractile machinery. The cytoskeleton is an interconnected network of regulatory proteins and filamentous polymers that undergoes massive rearrangements to generate different biopolymer structures, providing the necessary forces and structural support for cell movements. It is therefore of unquestionable relevance the role of mechanics in biological processes, as well as the responsibility of mechanobiology to provide a support for an exhaustive characterization of alive systems. Multi-physics models with applications in mechanobiology require to account for several phenomena involved in the process under investigation. The finite strain theory in continuum mechanics certainly represents the best candidate to describe the structural response of cells undergoing massive deformations during cell adhesion, spreading, and migration. However, mechanics itself is evidently not sufficient. Despite the coupling between finite strain mechanics and thermodynamics stands for the basis of a countless amount of multi-physics models, the necessity to consider other processes such as mass transport with proper diffusion laws, and to account for chemical reactions, is beyond doubt. The coupling between thermo-mechanics and chemo-transport phenomena leads thus to design the so-termed chemo-transport-mechanical frameworks. Furthermore, and as well known in the realm of thermodynamics, insightful models often need to provide a statistically-based characterization of phenomena. It is the case of cross-linked polymer networks modeling in the field of polymer physics. Additional challenges therefore arise in accounting for multi-physics events that occur at different space-time scales. In this thesis, general and theoretical multi-physics models are proposed for applications that are not only restricted to the realm of mechanobiology. Finite strain continuum thermo-mechanics, diffusion laws and phase segregation, chemical reactions with trapping, statistically-based continuum mechanics, and the Galilean electromagnetic theory, represent the main topics investigated in this thesis and adopted for designing several multi-physics formulations.
La tesi proposta nasce da ben definite motivazioni biologiche, con lo scopo di fornire una caratterizzazione del comportamento delle cellule endoteliali nel processo di angiogenesi tumorale. Diversi framework multi-fisici vengono introdotti per applicazioni nel campo della meccanobiologia, così come in altre aree di ricerca. L’angiogenesi è un noto processo progressivo, fisiologico o patologico, caratterizzato dalla formazione di nuovi vasi sanguigni che si originano da quelli pre-esistenti. Le cellule endoteliali, le quali rivestono le pareti interne dei vasi sanguigni, vengono influenzate da stimuli extra-cellulari rilasciati dalle cellule tumorali, e rispondono tramite rilocazione di recettori (proteine) sulla loro membrana, migrazione cellulare collettiva e riorganizzazione in nuovi vasi sanguigni. Il ruolo della dinamica recettoriale e della meccanica cellulare in risposta agli stimuli extra-cellulari è dunque oggetto di grande interesse, in quanto processi cruciali nelle fasi iniziali dell’angiogenesi. Le funzioni strutturali della cellula, le quali permettono l’avvenimento di processi ben noti come l’adesione e l’accasciamento cellulare, la motilità e la migrazione, sono attribuite alla generazione e la riorganizzazione della macchina contrattile citoscheletrica. Il citoscheletro è una rete interconnessa di proteine e polimeri filamentosi, soggetto ad un imponente riarrangiamento che permette la generazione di diverse strutture polimeriche, fornendo le forze e il supporto strutturale necessari per il movimento cellulare. Il ruolo della meccanica nei processi biologici è dunque di inconfutabile rilevanza, così come la responsabilità della meccanobiologia di fornire un supporto ad una caratterizzazione esaustiva dei sistemi viventi. Modell multi-fisici con applicazioni in meccanobiologia richiedono di tener conto degli svariati fenomeni coinvolti nel processo sotto investigazione. La teoria della meccanica del continuo in grandi deformazioni rappresenta certamente il miglior candidato per descrivere la risposta strutturale delle cellule soggette a massicce deformazioni durante i processi di adesione cellulare, accasciamento e migrazione. Ciononostante, la sola meccanica è evidentemente insufficiente. Nonostante l’accoppiamento tra la meccanica in grandi deformazioni e la termodinamica sia alla base di innumerevoli modelli multi-fisici, è indubbia la necessità di considerare altri processi quali il trasporto di massa con appropriate leggi di diffusione, e di tenere conto delle reazioni chimiche. L’accoppiamento tra termodinamica, meccanica e chemo-diffusione conduce alla realizzazione dei così definiti chemo-transport-mechanical frameworks. Inoltre, e così come ben noto nel campo della termodinamica, la necessità di fornire una caratterizzazione statisticamente basata di alcuni fenomeni è frequente. È il caso della modellazione dei reticoli polimerici nel campo della fisica dei polimeri. Si presentano di conseguenza sfide aggiuntive nel tener conto di eventi multi-fisici a differenti scale spazio-temporali. In questa tesi, i modelli teorici multi-fisici proposti trovano applicazioni che non sono puramente ristrette al campo della meccanobiologia. Termodinamica e meccanica in grandi deformazioni, meccanica dei continui statisticamente basata, e la teoria dell’elettromagnetismo Galileiano, rappresentano i principali temi investigati nella tesi e adottati per la realizzazione di diverse formulazioni multi-fisiche.
Finite strain chemo-thermo-electro-mechanics with applications in mechanobiology / Arricca, Matteo. - (2022 Dec 14).
Finite strain chemo-thermo-electro-mechanics with applications in mechanobiology
Arricca, Matteo
2022-12-14
Abstract
The proposed thesis comes from well-defined biological motivations, aiming at providing a characterization of endothelial cell behavior in tumor angiogenesis. Several multi-physics frameworks are introduced for applications in the realm of mechanobiology, as well as in many other research areas. Angiogenesis is a well known physiological or pathological multistep process that consists in the formation of new blood vessels from preexisting ones. Covering the inner walls of blood vessels, endothelial cells are affected by extracellular stimuli released by tumor cells, and respond via relocation of receptor proteins along their membrane, collective migration and reorganization in novel vessels. The role of receptor dynamics and cell mechanics in response to extracellular stimuli is therefore object of great interest, as they are pivotal processes at the early stages of angiogenesis. Cell structural functions, allowing the occurrence of well known processes such as cell adhesion and spreading, motility and migration, are ascribed to the generation and reorganization of the cytoskeletal contractile machinery. The cytoskeleton is an interconnected network of regulatory proteins and filamentous polymers that undergoes massive rearrangements to generate different biopolymer structures, providing the necessary forces and structural support for cell movements. It is therefore of unquestionable relevance the role of mechanics in biological processes, as well as the responsibility of mechanobiology to provide a support for an exhaustive characterization of alive systems. Multi-physics models with applications in mechanobiology require to account for several phenomena involved in the process under investigation. The finite strain theory in continuum mechanics certainly represents the best candidate to describe the structural response of cells undergoing massive deformations during cell adhesion, spreading, and migration. However, mechanics itself is evidently not sufficient. Despite the coupling between finite strain mechanics and thermodynamics stands for the basis of a countless amount of multi-physics models, the necessity to consider other processes such as mass transport with proper diffusion laws, and to account for chemical reactions, is beyond doubt. The coupling between thermo-mechanics and chemo-transport phenomena leads thus to design the so-termed chemo-transport-mechanical frameworks. Furthermore, and as well known in the realm of thermodynamics, insightful models often need to provide a statistically-based characterization of phenomena. It is the case of cross-linked polymer networks modeling in the field of polymer physics. Additional challenges therefore arise in accounting for multi-physics events that occur at different space-time scales. In this thesis, general and theoretical multi-physics models are proposed for applications that are not only restricted to the realm of mechanobiology. Finite strain continuum thermo-mechanics, diffusion laws and phase segregation, chemical reactions with trapping, statistically-based continuum mechanics, and the Galilean electromagnetic theory, represent the main topics investigated in this thesis and adopted for designing several multi-physics formulations.File | Dimensione | Formato | |
---|---|---|---|
PhDThesis_MatteoArricca.pdf
accesso aperto
Descrizione: TESI
Tipologia:
Tesi di dottorato
Dimensione
5.31 MB
Formato
Adobe PDF
|
5.31 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.