La presente memoria descrive le procedure utilizzate per la valutazione metrologica di procedure di calibrazione estrinseca di sistemi di visione composti da più telecamere. Viene definita calibrazione estrinseca quella procedura che consente di calcolare posizione ed orientamento di ogni telecamera presente in un sistema multicamera rispetto a tutte le altre. I metodi di calibrazione estrinseca si possono dividere principalmente in tre gruppi: tradizionali, basati sul riconoscimento di forme tridimensionali e basati su skeletonization. I metodi di calibrazione tradizionali si basano sull’utilizzo di target di calibrazione noti (scacchiere, griglie di punti, frange, etc) che vengono riconosciuti automaticamente dal sistema. Il sistema misura la posizione dei punti caratteristici del target ottenendo in questo modo i parametri di rotazione e traslazione desiderati. I metodi basati sul riconoscimento di forme tridimensionali (3D shape matching) sono invece fondati sulla coerenza geometrica di un oggetto 3D posizionato nel campo di vista delle varie telecamere: ciascun dispositivo registra una parte dell’oggetto target e successivamente, allineando ciascuna vista con le rimanenti, ed analizzando la traiettoria dell’oggetto vista da ogni telecamera è possibile risalire alle matrici di calibrazione. I metodi di calibrazione tradizionali, così come quelli basati su 3D shape matching risultano svantaggiosi in termini di tempo di esecuzione. Inoltre, queste tipologie necessitano di un target di calibrazione. Infine, i metodi basati sul riconoscimento dello scheletro umano (skeleton-based) utilizzano come target di calibrazione direttamente le articolazioni (joint) di un operatore che si posiziona all’interno del campo di vista delle telecamere. I metodi skeleton-based rappresentano quindi un’evoluzione dei metodi di 3D shape matching in quanto è come se venissero considerate forme 3D multiple rappresentate dai segmenti corporei dell’operatore stesso. Risulta quindi possibile ottenere una calibrazione estrinseca senza alcun oggetto caratteristico, ma semplicemente utilizzando il corpo dell’operatore umano come oggetto stesso. Nonostante in letteratura siano presenti lavori relativi alla valutazione dell’accuratezza nella misura dei joint, non sono presenti lavori che mostrano come questa accuratezza venga propagata a livello di matrici di rototraslazione risultanti dalla procedura di calibrazione. Il presente lavoro descrive le procedure utilizzate per valutare l’affidabilità della calibrazione estrinseca ottenuta tramite le posizioni dei joint misurate tramite il metodo di skeletonization descritto in [3].

Validazione di algoritmi di calibrazione estrinseca basati su skeletonization del corpo umano

Pasinetti S.
Methodology
;
Nuzzi C.
Validation
;
Lancini M.
Investigation
;
Sansoni G.
Supervision
2019-01-01

Abstract

La presente memoria descrive le procedure utilizzate per la valutazione metrologica di procedure di calibrazione estrinseca di sistemi di visione composti da più telecamere. Viene definita calibrazione estrinseca quella procedura che consente di calcolare posizione ed orientamento di ogni telecamera presente in un sistema multicamera rispetto a tutte le altre. I metodi di calibrazione estrinseca si possono dividere principalmente in tre gruppi: tradizionali, basati sul riconoscimento di forme tridimensionali e basati su skeletonization. I metodi di calibrazione tradizionali si basano sull’utilizzo di target di calibrazione noti (scacchiere, griglie di punti, frange, etc) che vengono riconosciuti automaticamente dal sistema. Il sistema misura la posizione dei punti caratteristici del target ottenendo in questo modo i parametri di rotazione e traslazione desiderati. I metodi basati sul riconoscimento di forme tridimensionali (3D shape matching) sono invece fondati sulla coerenza geometrica di un oggetto 3D posizionato nel campo di vista delle varie telecamere: ciascun dispositivo registra una parte dell’oggetto target e successivamente, allineando ciascuna vista con le rimanenti, ed analizzando la traiettoria dell’oggetto vista da ogni telecamera è possibile risalire alle matrici di calibrazione. I metodi di calibrazione tradizionali, così come quelli basati su 3D shape matching risultano svantaggiosi in termini di tempo di esecuzione. Inoltre, queste tipologie necessitano di un target di calibrazione. Infine, i metodi basati sul riconoscimento dello scheletro umano (skeleton-based) utilizzano come target di calibrazione direttamente le articolazioni (joint) di un operatore che si posiziona all’interno del campo di vista delle telecamere. I metodi skeleton-based rappresentano quindi un’evoluzione dei metodi di 3D shape matching in quanto è come se venissero considerate forme 3D multiple rappresentate dai segmenti corporei dell’operatore stesso. Risulta quindi possibile ottenere una calibrazione estrinseca senza alcun oggetto caratteristico, ma semplicemente utilizzando il corpo dell’operatore umano come oggetto stesso. Nonostante in letteratura siano presenti lavori relativi alla valutazione dell’accuratezza nella misura dei joint, non sono presenti lavori che mostrano come questa accuratezza venga propagata a livello di matrici di rototraslazione risultanti dalla procedura di calibrazione. Il presente lavoro descrive le procedure utilizzate per valutare l’affidabilità della calibrazione estrinseca ottenuta tramite le posizioni dei joint misurate tramite il metodo di skeletonization descritto in [3].
2019
978-88-9440-942-0
File in questo prodotto:
File Dimensione Formato  
02_Validazione di algoritmi di calibrazione estrinseca basati su skeletonization del corpo umano.pdf

accesso aperto

Tipologia: Full Text
Licenza: Dominio pubblico
Dimensione 301.89 kB
Formato Adobe PDF
301.89 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/566307
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact