Con il nuovo paradigma di Industria 4.0 si introducono i robot collaborativi, che condividono l’area di lavoro con l’operatore. Risulta necessario non solo elaborare adeguate strategie per assicurare la sicurezza degli operatori, ma anche metodi efficaci per comunicare con i robot collaborativi in modo naturale, tramite comandi vocali o gesti. Come primo approccio al problema della comunicazione umano-robot si è adottato un sistema di riconoscimento gesti basato su un algoritmo di Deep Learning, sviluppato sulla piattaforma MATLAB 2017b, in grado di riconoscere quattro diversi tipi di gesto a partire da immagini RGB, come riportato in Fig. 1. I gesti proposti sono caratterizzati da tre condizioni: devono essere eseguiti usando entrambe le mani con la sinistra chiusa a pugno, il più possibile alla stessa altezza e non troppo distanti tra loro. Il sistema è stato testato offline su quattro diversi dataset acquisiti sperimentalmente per valutare le performance in diverse condizioni. L’applicazione è stata poi testata in real-time per valutare la velocità del sistema nell’effettuare i riconoscimenti.
Gesture recognition per robotica collaborativa: primo approccio
Nuzzi C.
Conceptualization
;Pasinetti S.Validation
;Lancini M.Writing – Review & Editing
;Docchio F.Supervision
;Sansoni G.Supervision
2018-01-01
Abstract
Con il nuovo paradigma di Industria 4.0 si introducono i robot collaborativi, che condividono l’area di lavoro con l’operatore. Risulta necessario non solo elaborare adeguate strategie per assicurare la sicurezza degli operatori, ma anche metodi efficaci per comunicare con i robot collaborativi in modo naturale, tramite comandi vocali o gesti. Come primo approccio al problema della comunicazione umano-robot si è adottato un sistema di riconoscimento gesti basato su un algoritmo di Deep Learning, sviluppato sulla piattaforma MATLAB 2017b, in grado di riconoscere quattro diversi tipi di gesto a partire da immagini RGB, come riportato in Fig. 1. I gesti proposti sono caratterizzati da tre condizioni: devono essere eseguiti usando entrambe le mani con la sinistra chiusa a pugno, il più possibile alla stessa altezza e non troppo distanti tra loro. Il sistema è stato testato offline su quattro diversi dataset acquisiti sperimentalmente per valutare le performance in diverse condizioni. L’applicazione è stata poi testata in real-time per valutare la velocità del sistema nell’effettuare i riconoscimenti.File | Dimensione | Formato | |
---|---|---|---|
01_Gesture recognition per robotica collaborativa primo approccio.pdf
accesso aperto
Tipologia:
Full Text
Licenza:
Dominio pubblico
Dimensione
196.18 kB
Formato
Adobe PDF
|
196.18 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.