The discovery of hiPSCs made them an appropriate and compelling candidates for disease modelling and personalized cell therapies. The employment of hiPSCs could be a very important tool to better understand pathologies poorly characterized as the ultrarare Cardiospondylocarpofacial syndrome (CSCF). CSCF is a multifactorial syndrome that causes many dysfunctions at the expense of multiple organs. We reported the reprogramming and characterization of a new hiPSC line registered as UNIBS17-A, derived from a patient’s fibroblasts, who was diagnosed for cardiospondylofacial syndrome derived from a de novo mutation c.737-7A>G. We used the Sendai virus as vector for introducing OSKM factors. We obtained a new stable hiPSC line with pluripotent features able to differentiate in the three germs layers, that could be use in disease modelling. hiPSCs are a potential constant source of human cells, in particular hard-to-reach tissue cells such as cardiomyocytes. One of the major limitation in the use of hiPSC for disease modelling is their maturation status. We investigated the expression of the inhibitory isoform of the troponin complex. Our study demonstrates that hi-CMs never fully acquire an adult phenotype, indeed the adult isoform of the inhibitory troponin (cTnI) starts to appear, but the fetal isoform of the inhibitory troponin (ssTnI) is never switch-off both in molecular and protein level, even when cells are cultured for long periods (90 days). Alongside the analysis of hi-CMs maturation, another factor of interest in research is the development of new easily applicable and non-invasive methods to investigate the functionality of hi-CMs in vitro. Here we reported an imaging method that, by exploiting an algorithm (previously described), allow us to monitor the kinetic and dynamic properties of cells over time, without perturbing them. This analysis allows us to monitor frequency, contractility, kinetic energy and force of contraction developed by the hi-CMs kept in culture for 90 days. The data obtained show that the trend over time of the parameter considered in our study could be associated whit the inability of hi-CMs to reach a complete maturation stage. Finally, another hiPSCs field of great interest is to use 3D self-aggregates structure to improve the phenotype of hiPS-derived cells. We derived a 3D model of both spheroids and organoids to better simulate an environment comparable to the organism one. Furthermore, we used a bioreactor (LiveBox) to create a dynamic culture that, leading a continuous flow of nutrient, mimic the natural condition. Our results carried out that mimicking the organs’ characteristics leads cells to acquire a phenotype more similar of those in the human body. Further improvement will be needed, but likely, this system should be a good model on which performing hepatotoxicity test, with the aim of reducing the use of animal models in research.
La possibilità di riprogrammare cellule somatiche in cellule staminali pluripotenti indotte (hiPSCs) ha aperto la strada a svariate possibilità nel campo della medicina personalizzata e rigenerativa. Le hiPSCs ci permettono di studiare malattie poco conosciute per le quali risulta difficile trovare un modello di studio adeguato, come le malattie molto rare che colpiscono numerosi organi del corpo. In quest’ottica abbiamo riprogrammato i fibroblasti di una bambina di 11 anni a cui era stata diagnosticata la sindrome cardiospondilocarpofacciale. Abbiamo utilizzato il Virus Sendai come vettore per l’inserimenti dei fattori OSKM che ci ha permesso di ottenere una nuova linea stabile di cellule pluripotenti (UNIBS17-A), che sono in grado di differenziare in tutti i tipi cellulari. Con questa nuova linea di hiPSC sarà possibile conoscere meglio i meccanismi alla base di questa patologia. Le hiPSC sono un modello innovativo e con grandissime potenzialità nell’ambito della ricerca scientifica, ma ancora oggi restano dei limiti associati al loro utilizzo; uno tra questi è legato al grado di maturazione, essenziale per studiare malattie associate all’età come le malattie cardiache. Abbiamo perciò deciso di studiare il grado di maturazione dei cardiomiociti derivati da hiPSCs (hi-CMs). Il nostro studio mostra i hi-CMs non acquisiscono mai del tutto un fenotipo adulto, infatti l’isoforma fetale della troponina Inibitoria non viene mai spenta, anche quando le cellule vengono mantenute in coltura per lunghi periodi (90 gg). al fianco degli studi che si interessano al grado di maturazione degli hiCMs un altro fattore d’interesse è quello che mira a sviluppare nuovi metodi, facilmente applicabili e non invasivi per indagare la funzionalità dei hi-CMs in vitro. Qui riportiamo un metodo di imaging che sfruttando un algoritmo, già precedentemente descritto, ci permette di monitorare nel tempo le proprietà cinetiche e dinamiche delle cellule, senza doverle perturbare. Questo tipo di analisi ci ha permesso di monitorare importanti parametri, quali la frequenza di contrazione, la velocità di contrazione, l’energia cinetica e la forza di contrazione sviluppate dai hi-CMs che abbiamo tenuto in coltura per 90 giorni. I dati ottenuti evidenziano che l’andamento nel tempo dei parametri presi in considerazione potrebbe essere associato alla loro incapacità di raggiungere uno stadio di maturazione completo. Infine un altro campo di grande interesse, per migliorare il fenotipo che viene raggiunto dalle cellule derivate da hiPSCs è rivolto all’utilizzo di queste in modelli 3D quali sferoidi e organoidi. Abbiamo quindi derivato un modello epatico in 3D e per simulare al meglio un contesto paragonabile all’organismo abbiamo utilizzato un bioreattore (LiveBox) in coltura dinamica. Le analisi svolte dimostrano che, mimando le caratteristiche dell’organo e dell’ambiente in cui esso è inserito, si possono ottenere dei vantaggi, infatti le cellule in vitro acquisiscono un fenotipo più simile a quello naturale. Saranno necessari ulteriori miglioramenti, ma, verosimilmente, questo sistema può essere sfruttato per svolgere test farmacologici di epatotossicità su cellule umane, riducendo anche l’utilizzo di modelli animali.
hiPS-derived differentiated cells for modelling human development and disease / Calamaio, Serena. - (2022 Jun 20).
hiPS-derived differentiated cells for modelling human development and disease
Calamaio, Serena
2022-06-20
Abstract
The discovery of hiPSCs made them an appropriate and compelling candidates for disease modelling and personalized cell therapies. The employment of hiPSCs could be a very important tool to better understand pathologies poorly characterized as the ultrarare Cardiospondylocarpofacial syndrome (CSCF). CSCF is a multifactorial syndrome that causes many dysfunctions at the expense of multiple organs. We reported the reprogramming and characterization of a new hiPSC line registered as UNIBS17-A, derived from a patient’s fibroblasts, who was diagnosed for cardiospondylofacial syndrome derived from a de novo mutation c.737-7A>G. We used the Sendai virus as vector for introducing OSKM factors. We obtained a new stable hiPSC line with pluripotent features able to differentiate in the three germs layers, that could be use in disease modelling. hiPSCs are a potential constant source of human cells, in particular hard-to-reach tissue cells such as cardiomyocytes. One of the major limitation in the use of hiPSC for disease modelling is their maturation status. We investigated the expression of the inhibitory isoform of the troponin complex. Our study demonstrates that hi-CMs never fully acquire an adult phenotype, indeed the adult isoform of the inhibitory troponin (cTnI) starts to appear, but the fetal isoform of the inhibitory troponin (ssTnI) is never switch-off both in molecular and protein level, even when cells are cultured for long periods (90 days). Alongside the analysis of hi-CMs maturation, another factor of interest in research is the development of new easily applicable and non-invasive methods to investigate the functionality of hi-CMs in vitro. Here we reported an imaging method that, by exploiting an algorithm (previously described), allow us to monitor the kinetic and dynamic properties of cells over time, without perturbing them. This analysis allows us to monitor frequency, contractility, kinetic energy and force of contraction developed by the hi-CMs kept in culture for 90 days. The data obtained show that the trend over time of the parameter considered in our study could be associated whit the inability of hi-CMs to reach a complete maturation stage. Finally, another hiPSCs field of great interest is to use 3D self-aggregates structure to improve the phenotype of hiPS-derived cells. We derived a 3D model of both spheroids and organoids to better simulate an environment comparable to the organism one. Furthermore, we used a bioreactor (LiveBox) to create a dynamic culture that, leading a continuous flow of nutrient, mimic the natural condition. Our results carried out that mimicking the organs’ characteristics leads cells to acquire a phenotype more similar of those in the human body. Further improvement will be needed, but likely, this system should be a good model on which performing hepatotoxicity test, with the aim of reducing the use of animal models in research.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.