The inaccessibility to some types of human samples in vivo and the differences between animal models and human physiology hamper the study of human organ development and the pathogenesis of important human diseases. Deeper understanding in three dimensional (3D) cell culture techniques and differentiation protocols have allowed the institution of organoid (ORG) culture systems. Liver ORGs can be used for disease modeling and drug screening, as well as studying liver development. ORGs are a powerful technology in many biological and clinical applications, due to their physiological 3D architecture and their wide versatility in terms of obtainable tissue types; ORGs, in facts, have been used in a high number of biomedical studies for disease modeling, precision medicine, and toxicology studies. Patient-derived liver ORGs can be a crucial tool to investigate the mechanisms of diseases, such as hereditary conditions and cancer. When switching from a 2D cell culture to a 3D construct, it is important to consider the maintenance of mass transport. In fact, cell survival depends not only on the ability to supply nutrients and oxygen, but also on the removal of waste products and metabolites. While the ORG approach remains very promising, the use of liver ORG on a large scale needs to overcome the current technological and biological challenges of controlling organoid size, cell composition and shape. The many progresses made in setting up 3D culture conditions, by monitoring and controlling specific environmental factors using bioreactors, provide new and better technologies to meet the reproducibility requirements. In this view, our work aimed at the development of human liver ORGs as a reliable 3D model for disease modeling and drug screening. Our primary goal was to set up and optimize the protocols used to obtain ORGs in a reproducible way and characterize them. We used peculiar multiwell plates specifically designed to obtain 3D cell microaggregates. Not only using these multiwell plates granted an acceptable degree of variability in terms of size of the aggregates, but the high number of microwells on each plate easily allowed the production of a batch of spheroids/organoids. Moreover, we cultured the organoids in either 3D dynamic and static culture conditions; studying their effects on the cells and identifying the culture condition with the best outcomes in terms of cell viability and behaviour. In order to do so, we used a perfusion bioreactor: the IVTech’s LiveBox1; a small bioreactor, comparable in sizes to classical culture-ware such as petri dishes and multiwell plates, allowing the use of a lower number of cells and smaller volumes of culture medium, when compared to other bioreactors, a crucial point when working with cells differentiated from induced Pluripotent Stem Cells (iPSCs). In our preliminary study, we demonstrated that using a dynamic culture condition, such as the LiveBox1 bioreactor, increased the viability of the cultured organoids. Our goal was to develop a model that could be used in disease modeling and drug screening tests, hence why we wanted to derive patient-specific cells. Using a control iPSC line we differentiated and characterized induced Mesenchymal Stem Cells (iMSCs) and induced Hepatocytes (iHEPs) to use to assemble the organoids. Both obtained cell types express characteristic markers and properties, thus confirming their nature. In conclusion, though setting up and optimizing a 3D organoid model can be challenging, the perks and possibilities this tool has to offer outweigh the efforts needed.
L'inaccessibilità in vivo ad alcuni tipi di campioni umani e le differenze tra modelli animali e fisiologia umana ostacolano lo studio dell’organogenesi e della patogenesi di importanti malattie umane. Una comprensione più approfondita delle tecniche di coltura cellulare tridimensionale (3D) e dei protocolli di differenziazione ha consentito l'istituzione di sistemi di coltura di organoidi (ORG). Gli ORG epatici possono essere utilizzati per il disease modeling e lo screening dei farmaci, nonché per studiare lo sviluppo del fegato. Gli ORG sono una tecnologia potente in molte applicazioni biologiche e cliniche, grazie alla loro architettura 3D fisiologica e alla loro ampia versatilità in termini di tipi di tessuto ottenibili; gli ORG, infatti, sono stati utilizzati in numerosi studi biomedici su modelli di malattie, medicina di precisione e studi tossicologici. Gli ORG epatici derivati dai pazienti possono essere uno strumento cruciale per studiare i meccanismi di malattie, come le condizioni genetiche ereditarie e il cancro. Quando si passa da una coltura cellulare 2D a un costrutto 3D, è importante considerare il mantenimento del trasporto di massa. La sopravvivenza cellulare, infatti, dipende non solo dalla capacità di fornire nutrienti e ossigeno, ma anche dalla rimozione dei prodotti di scarto e dei metaboliti. Sebbene l'approccio basato su ORG rimanga molto promettente, l'uso degli ORG epatici su larga scala deve superare le attuali sfide tecnologiche e biologiche inerenti al controllo della composizione in cellule, delle dimensioni, e della forma degli ORG. I numerosi progressi compiuti nel set up di condizioni di coltura 3D, in grado di monitorare e controllare specifici fattori ambientali attraverso l’uso di bioreattori, forniscono tecnologie nuove e migliori per soddisfare i requisiti di riproducibilità. In questa prospettiva, il nostro lavoro ha avuto come scopo lo sviluppo di ORG epatici umani come modello 3D affidabile per il disease modeling e lo screening di farmaci. Il nostro obiettivo principale era impostare e ottimizzare i protocolli utilizzati per ottenere gli ORG in modo riproducibile per poi caratterizzarli. Abbiamo utilizzato particolari piastre appositamente progettate per ottenere microaggregati cellulari 3D. Non solo l'utilizzo di queste piastre ha garantito un accettabile grado di variabilità in termini di dimensione degli aggregati, ma l'elevato numero di micropozzetti su ciascuna piastra ha permesso facilmente la produzione di un grande numero di sferoidi/organoidi. Inoltre, abbiamo coltivato gli ORG in condizioni di coltura 3D dinamiche e statiche; studiandone gli effetti sulle cellule e identificando la condizione di coltura con i migliori risultati in termini di vitalità e comportamento cellulare. Per farlo abbiamo utilizzato un bioreattore a perfusione: il LiveBox1 di IVTech; un piccolo bioreattore, paragonabile nelle dimensioni ai classici strumenti di coltura come piastre di Petri, che consente l'uso di un numero inferiore di cellule e volumi di terreno di coltura inferiori, rispetto ad altri bioreattori, un punto cruciale quando si lavora con cellule differenziate da cellule staminali pluripotenti indotte (iPSC). Nel nostro studio preliminare, abbiamo dimostrato che l'utilizzo di una condizione di coltura dinamica, come il bioreattore LiveBox1, ha aumentato la vitalità degli organoidi in esso coltivati. Utilizzando una linea iPSC di controllo abbiamo differenziato e caratterizzato cellule staminali mesenchimali indotte (iMSC) ed epatociti indotti (iHEP) da utilizzare per assemblare gli organoidi. Entrambi i tipi cellulari ottenuti esprimono marcatori e proprietà caratteristici, confermando così la loro natura. In conclusione, sebbene la creazione e l'ottimizzazione di un modello di organoide 3D possano essere impegnative, i vantaggi e le possibilità che questo strumento ha da offrire superano gli sforzi necessari.
Building engineered human tissues: from cell aggregates to organoids / Serzanti, Marialaura. - (2022 Mar 04).
Building engineered human tissues: from cell aggregates to organoids
SERZANTI, Marialaura
2022-03-04
Abstract
The inaccessibility to some types of human samples in vivo and the differences between animal models and human physiology hamper the study of human organ development and the pathogenesis of important human diseases. Deeper understanding in three dimensional (3D) cell culture techniques and differentiation protocols have allowed the institution of organoid (ORG) culture systems. Liver ORGs can be used for disease modeling and drug screening, as well as studying liver development. ORGs are a powerful technology in many biological and clinical applications, due to their physiological 3D architecture and their wide versatility in terms of obtainable tissue types; ORGs, in facts, have been used in a high number of biomedical studies for disease modeling, precision medicine, and toxicology studies. Patient-derived liver ORGs can be a crucial tool to investigate the mechanisms of diseases, such as hereditary conditions and cancer. When switching from a 2D cell culture to a 3D construct, it is important to consider the maintenance of mass transport. In fact, cell survival depends not only on the ability to supply nutrients and oxygen, but also on the removal of waste products and metabolites. While the ORG approach remains very promising, the use of liver ORG on a large scale needs to overcome the current technological and biological challenges of controlling organoid size, cell composition and shape. The many progresses made in setting up 3D culture conditions, by monitoring and controlling specific environmental factors using bioreactors, provide new and better technologies to meet the reproducibility requirements. In this view, our work aimed at the development of human liver ORGs as a reliable 3D model for disease modeling and drug screening. Our primary goal was to set up and optimize the protocols used to obtain ORGs in a reproducible way and characterize them. We used peculiar multiwell plates specifically designed to obtain 3D cell microaggregates. Not only using these multiwell plates granted an acceptable degree of variability in terms of size of the aggregates, but the high number of microwells on each plate easily allowed the production of a batch of spheroids/organoids. Moreover, we cultured the organoids in either 3D dynamic and static culture conditions; studying their effects on the cells and identifying the culture condition with the best outcomes in terms of cell viability and behaviour. In order to do so, we used a perfusion bioreactor: the IVTech’s LiveBox1; a small bioreactor, comparable in sizes to classical culture-ware such as petri dishes and multiwell plates, allowing the use of a lower number of cells and smaller volumes of culture medium, when compared to other bioreactors, a crucial point when working with cells differentiated from induced Pluripotent Stem Cells (iPSCs). In our preliminary study, we demonstrated that using a dynamic culture condition, such as the LiveBox1 bioreactor, increased the viability of the cultured organoids. Our goal was to develop a model that could be used in disease modeling and drug screening tests, hence why we wanted to derive patient-specific cells. Using a control iPSC line we differentiated and characterized induced Mesenchymal Stem Cells (iMSCs) and induced Hepatocytes (iHEPs) to use to assemble the organoids. Both obtained cell types express characteristic markers and properties, thus confirming their nature. In conclusion, though setting up and optimizing a 3D organoid model can be challenging, the perks and possibilities this tool has to offer outweigh the efforts needed.File | Dimensione | Formato | |
---|---|---|---|
SerzantiPhDDissertation_final.pdf
accesso aperto
Descrizione: Tesi
Tipologia:
Tesi di dottorato
Dimensione
6.97 MB
Formato
Adobe PDF
|
6.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.