In this paper we characterize the non-singular Hermitian variety ${mathcal H}(6,q^2)$ of $mathrm{PG}(6, q^2)$, $q eq2$ among the irreducible hypersurfaces of degree $q+1$ in $mathrm{PG}(6, q^2)$ not containing solids by the number of its points and the existence of a solid $S$ meeting it in $q^4+q^2+1$ points.
Titolo: | On Hermitian varieties in $mathrm{PG}(6,q^2)$ |
Autori: | |
Data di pubblicazione: | 2020 |
Abstract: | In this paper we characterize the non-singular Hermitian variety ${mathcal H}(6,q^2)$ of $mathrm{PG}(6, q^2)$, $q eq2$ among the irreducible hypersurfaces of degree $q+1$ in $mathrm{PG}(6, q^2)$ not containing solids by the number of its points and the existence of a solid $S$ meeting it in $q^4+q^2+1$ points. |
Handle: | http://hdl.handle.net/11379/538478 |
Appare nelle tipologie: | 5.12 Altro |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
H6bis-rev.pdf | Documento in Pre-print | DRM non definito | Open Access Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.