In this paper we characterize the non-singular Hermitian variety ${mathcal H}(6,q^2)$ of $mathrm{PG}(6, q^2)$, $q eq2$ among the irreducible hypersurfaces of degree $q+1$ in $mathrm{PG}(6, q^2)$ not containing solids by the number of its points and the existence of a solid $S$ meeting it in $q^4+q^2+1$ points.
On Hermitian varieties in $mathrm{PG}(6,q^2)$
Luca Giuzzi;
2020-01-01
Abstract
In this paper we characterize the non-singular Hermitian variety ${mathcal H}(6,q^2)$ of $mathrm{PG}(6, q^2)$, $q eq2$ among the irreducible hypersurfaces of degree $q+1$ in $mathrm{PG}(6, q^2)$ not containing solids by the number of its points and the existence of a solid $S$ meeting it in $q^4+q^2+1$ points.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
H6bis-rev.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
DRM non definito
Dimensione
358.15 kB
Formato
Adobe PDF
|
358.15 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.