In this paper we characterize the non-singular Hermitian variety ${mathcal H}(6,q^2)$ of $mathrm{PG}(6, q^2)$, $q eq2$ among the irreducible hypersurfaces of degree $q+1$ in $mathrm{PG}(6, q^2)$ not containing solids by the number of its points and the existence of a solid $S$ meeting it in $q^4+q^2+1$ points.

On Hermitian varieties in $mathrm{PG}(6,q^2)$

Luca Giuzzi;
2020-01-01

Abstract

In this paper we characterize the non-singular Hermitian variety ${mathcal H}(6,q^2)$ of $mathrm{PG}(6, q^2)$, $q eq2$ among the irreducible hypersurfaces of degree $q+1$ in $mathrm{PG}(6, q^2)$ not containing solids by the number of its points and the existence of a solid $S$ meeting it in $q^4+q^2+1$ points.
2020
File in questo prodotto:
File Dimensione Formato  
H6bis-rev.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 358.15 kB
Formato Adobe PDF
358.15 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/538478
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact