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Abstract

In this paper we characterize the non-singular Hermitian variety
H(6,q?) of PG(6,q¢%), ¢ # 2 among the irreducible hypersurfaces of
degree q + 1 in PG(6,¢?) not containing solids by the number of its
points and the existence of a solid S meeting it in ¢* + ¢% + 1 points.
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1 Introduction

The set of all absolute points of a non-degenerate unitary polarity in PG(r, ¢?)
determines the Hermitian variety #(r,¢?). This is a non-singular algebraic
hypersurface of degree ¢ + 1 in PG(r,¢?) with a number of remarkable
properties, both from the geometrical and the combinatorial point of view;
see [5, 16]. In particular, H(r,q?) is a 2-character set with respect to the
hyperplanes of PG(r,¢?) and 3-character blocking set with respect to the
lines of PG(r, ¢?) for r > 2. An interesting and widely investigated problem
is to provide combinatorial descriptions of H(r, ¢?) among all hypersurfaces
of the same degree.

First, we observe that a condition on the number of points and the inter-
section numbers with hyperplanes is not in general sufficient to characterize
Hermitian varieties; see [1],[2]. On the other hand, it is enough to consider
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in addition the intersection numbers with codimension 2 subspaces in order
to get a complete description; see [7].

In the present paper, we shall investigate a combinatorial characteriza-
tion of the Hermitian hypersurface H(6,¢?) in PG(6,¢?) among all hyper-
surfaces of the same degree having also the same number of GF(¢?)-rational
points.

More in detail, in [12, 13] it has been proved that if X is a hypersurface
of degree ¢ + 1 in PG(r,q¢?), 7 > 3 odd, with |X| = |H(r,¢*)| = (¢"* +
(—=1)")(q" — (=1)")/(¢*> — 1) GF(g?)-rational points, not containing linear
subspaces of dimension greater than %, then X is a non-singular Hermitian
variety of PG(r,q?). This result generalizes the characterization of [8] for
the Hermitian curve of PG(2,¢?), q # 2.

The case where 7 > 4 is even is, in general, currently open. A starting
point for a characterization in arbitrary even dimension can be found in [3]
where the case of a hypersurface X' of degree ¢ + 1 in PG(4,¢%), ¢ > 3 is
considered. There, it is shown that when X has the same number of points
as H(4, ¢%), does not contain any subspaces of dimension greater than 1 and
meets at least one plane 7 in ¢®> + 1 GF(¢?)-rational points, then X is a
Hermitian variety.

In this article we deal with hypersurfaces of degree g+ 1 in PG(6, ¢?) and
we prove that a characterization similar to that of [3] holds also in dimension
6. We conjecture that this can be extended to arbitrary even dimension.

Theorem 1.1. Let S be a hypersurface of PG(6,q%), ¢ > 2, defined over
GF(q?), not containing solids. If the degree of S is ¢+ 1 and the number of
its rational points is ¢'* + ¢+ ¢" + ¢* + ¢*> + 1, then every solid of PG(6, ¢°)
meets S in at least ¢* + % + 1 rational points. If there is at least a solid Y

such that |X3N S| = ¢* + ¢+ 1, then S is a non-singular Hermitian variety
of PG(6,¢?).

Furthermore, we also extend the result obtained in [3] to the case ¢ = 3.

2 Preliminaries and notation

In this section we collect some useful information and results that will be
crucial to obtain our result.

A Hermitian variety in PG(r,¢?) is the algebraic variety of PG(r,¢?)
whose points (v) satisfy the equation n(v,v) = 0 where 7 is a unitary form
GF(¢®)"! x GF(¢?)"*! — GF(¢?). The radical of the form 7 is the vector



subspace of GF(¢?)"*! given by
Rad(n) := {w € GF(¢*)""': Vv € GF(¢>)" !, n(v,w) = 0}.

The form 7 is non-degenerate if Rad(n) = {0}. If the form 7 is non-
degenerate, then the corresponding Hermitian variety is denoted by (7, ¢°)
and it is non-singular, of degree ¢ + 1 and contains

(@ + (D)@ = ()N (@ 1)

GF(g?)-rational points. When 7 is degenerate we shall call vertezx R; of
the degenerate Hermitian variety associated to n the projective subspace
R; := PG(Rad(n)) of PG(r,¢?). A degenerate Hermitian variety can always
be described as a cone of vertex R; and basis a non-degenerate Hermitian
variety H(r — t,q?) disjoint from R; where t = dim(Rad(n)) is the vector
dimension of the radical of 5. In this case we shall write the corresponding
variety as RyH(r —t,¢%). Indeed,

Rt’H(T - t7q2) = {P € <P> Q) Vi c Rt)Q € ,H(T - t’qz)}'

Any line of PG(r,¢?) meets a Hermitian variety (either degenerate or
not) in either 1, + 1 or ¢? 4 1 points (the latter value only for r > 2). The
maximal dimension of projective subspaces contained in the non-degenerate
Hermitian variety H(r,¢?) is (r — 2)/2, if  is even, or (r — 1)/2, if r is odd.
These subspaces of maximal dimension are called generators of H(r, ¢?) and
the generators of H(r,¢?) through a point P of H(r, ¢?) span a hyperplane
P+ of PG(r,q?), the tangent hyperplane at P.

It is well known that this hyperplane meets H(r,¢?) in a degenerate
Hermitian variety PH(r —2, ¢%), that is in a Hermitian cone having as vertex
the point P and as base a non-singular Hermitian variety of © = PG(r—2, ¢?)
contained in P+ with P ¢ ©.

Every hyperplane of PG(r, ¢?), which is not tangent, meets H(r, ¢%) in a
non-singular Hermitian variety H(r —1, ¢%), and is called a secant hyperplane
of H(r,q?). In particular, a tangent hyperplane contains

L+ (¢ + (D)) = (=D)")/(¢* — 1)

GF(¢?)-rational points of H(r, ¢?), whereas a secant hyperplane contains
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GF(g?)-rational points of H(r, ¢%).



Throughout this paper, the number of GF(¢")-points of an algebraic set
X will be denoted by N, (). For simplicity, we shall also use the convention
|X] = Np(X).

We now recall several results which we will make use of in the course of
this paper.

Lemma 2.1 ([15]). Let d be an integer with 1 < d < g+ 1 and let C be a
curve of degree d in PG(2,q) defined over GF(q), which may have GF(q)-

linear components. Then the number of its rational points is at most dg+ 1
and Ny(C) = dq+ 1 if and only if C is a pencil of d lines of PG(2,q).

Lemma 2.2 ([10]). Let d be an integer with 2 < d < ¢+ 2, and C a
curve of degree d in PG(2,q) defined over GF(q) without any GF(q)-linear
components. Then Ny(C) < (d —1)q+ 1, except for a class of plane curves
of degree 4 over GF(4) having 14 rational points.

Lemma 2.3 ([11]). Let S be a surface of degree d in PG(3,q) over GF(q).
Then
N(S) <dg® +q+1

Lemma 2.4 ([8]). Suppose q¢ # 2. Let C be a plane curve over GF(q?) of
degree q + 1 without GF(q?)-linear components. If C has ¢> + 1 rational
points, then C is a Hermitian curve.

Lemma 2.5 ([7]). A subset of points of PG(r,q*) having the same inter-
section numbers with respect to hyperplanes and spaces of codimension 2

as non-singular Hermitian varieties, is a non-singular Hermitian variety of
2
PG(r, ¢°).

From [9, Th 23.5.1,Th 23.5.3] we have the following.

Lemma 2.6. If W is a set of ¢ + ¢* + ¢*> + 1 points of PG(4,¢%), q > 2,
such that every line of PG(4,q?) meets W in 1,q+ 1 or ¢> + 1 points, then
W is a Hermitian cone with vertex a line and base a unital.

Finally, we recall that a blocking set with respect to lines of PG(r,q) is
a point set which blocks the lines, i.e., intersects each line of PG(r, q) in at
least one point.

3 Proof of Theorem 1.1

We first provide an estimate on the number of points of a curve of degree
q+1in PG(2,4?), where g is any prime power.
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Lemma 3.1. Let C be a plane curve over GF(q?), without GF(q¢?)-lines as
components and of degree q + 1. If the number of GF(¢?)-rational points of
Cis N < ¢+ 1, then

¢—(*—-2) ifg>3
N<{ 24 ifq=3 (3.1)
8 ifq=2.

Proof. We distinguish the following three cases:

(a) C has two or more GF(q?)-components;

(b) C is irreducible over GF(¢?), but not absolutely irreducible;
(c) C is absolutely irreducible.

Suppose first g # 2.
Case (a) Suppose C = C; UCs. Let d; be the degree of C;, for each i = 1,2.
Hence di + do = ¢+ 1. By Lemma 2.2,

N < qu(Cl) + qu(CQ) < [(q + 1) - 2]q2 +2= q3 - ((.72 - 2)

Case (b) Let C’ be an irreducible component of C over the algebraic closure
of GF(¢?). Let GF(¢?') be the minimum defining field of C’ and o be the
Frobenius morphism of GF(¢?!) over GF(¢?). Then

c=cuceucu...uc,
and the degree of C’, say e, satisfies g+1 = te with e > 1. Hence any GF(¢?)-
rational point of C is contained in ﬂ’;éC"’Z. In particular, N < e? < (‘1'5—1)2
by Bezout’s Theorem and (q;r—l)2 <q—(¢*-2).
Case (c) Let C be an absolutely irreducible curve over GF(¢?) of degree
q + 1. Either C has a singular point or not.

In general, an absolutely irreducible plane curve over GF(q?) is ¢*-
Frobenius non-classical if the ¢g?th power of coordinates of a general point is
on the tangent line to the curve at the point. Otherwise, the curve is said
to be Frobenius classical. A lower bound of the number of GF(q?)-points
for g>-Frobenius non-classical curves is given by [6, Corollary 1.4]: for a ¢*-
Frobenius non-classical curve C’ of degree d, we have N2(C') > d(¢* —d+2).
In particular, if d = g + 1, the lower bound is just ¢ + 1.

Going back to our original curve C, we know C is Frobenius classical
because N < ¢° + ]J Let F(z,y,2z) = 0 be an equation of C over GF(¢?).
We consider the curve D defined by %qu + %yQQ + %%zqz = 0. Then C is

!
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Ok
not a component of D because C is Frobenius classical. Furthermore, any =

GF(¢?)-point P lies on C N'D and the intersection multiplicity of C and D
at P is at least 2 by Euler’s theorem for homogeneous polynomials. Hence
by Bézout’s theorem, 2N < (¢ + 1)(¢* + ¢). Hence

b/
ConV/ 4)0
N<salat ) — € o e

This [argument is due to Stéhr and Voloch [18, Theorem 1.1]. This Stéhr S-V dgg,t
and Voloch’s bound is lower than the estimate for N in case (a) for ¢ > 4 Se b
and it is the same for ¢ = 4. When ¢ = 3 the bound in case (a) is smaller ‘
than the Stohr and Voloch’s bound.
4’]—’ Finally, we consider the case ¢ = 2. Under this assumption, C is a cubic
curve and neither case (a) nor case (b) might occur. For a degree 3 curve over
GF(g?) the Stohr and Voloch’s bound is loose, thus we need to change our
argument | If C has a singular point, then C is a rational curve with a unique
singular point. Since the degree of C is 3, singular points are either cusps
or ordinary double points. Hence N € {4,5,6}. If C is nonsingular, then
it is an elliptic curve and, by the Hasse-Weil bound, see [19], N € I where
I =1{1,2,...,9} and for each number N belonging to I there is an elliptic
curve over GF(4) with N points, from [14, Theorem 4.2]. This completes
the proof. O

Henceforth, from now on, we shall always suppose ¢ > 2 and we de-
note by S an algebraic hypersurface of PG(6,¢?) satisfying the following
hypotheses of Theorem 1.1:

S1) S is an algebraic hypersurface of degree ¢ + 1 defined over GF(¢?);

(
(S2) ISI=d" +¢° +¢"+q" + ¢ +1;

(S3) S does not contain projective 3-spaces (solids);

(S4) there exists a solid X3 such that |SN X3 = ¢* + ¢ + 1.
We are first going to prove that S is a blocking set of lines.

Lemma 3.2. An algebraic hypersurface T of degree ¢+1 in PG(r, ¢%), q # 2,
with | T| = |H(r,q?)| is a blocking set with respect to lines of PG(r, ¢?)

Proof. Suppose on the contrary that there is a line £ of PG(r,¢?) which
is disjoint from 7. Let a be a plane containing £. The algebraic plane
curve C = aNT of degree ¢ + 1 cannot have GF(¢?)-linear components and
hence it has at most ¢> + 1 points because of Lemma 2.2. If C had ¢ + 1



rational points, then from Lemma 2.4, C would be a Hermitian curve with an
external line, a contradiction since Hermitian curves are blocking sets. Thus
Np(C) < ¢>. Since ¢ > 2, by Lemma 3.1, Ngp(C) < ¢ — 1 and hence every
plane through r meets 7 in at most ¢ — 1 rational points. Consequently,
by considering all planes through r, we can bound the number of rational
points of T by N (T) < (¢* — 1)‘12;;11_1 =q¢* 3+ ... < |H(r,¢?)|, which
is a contradiction. Therefore there are no external lines to 7 and so T is a
blocking set w.r.t. lines of PG(r, ¢?). O

Remark 3.3. The proof of [3, Lemma 3.1] would work perfectly well here
under the hypothesis ¢ > 3. The alternative argument of Lemma 3.2 is
simpler and also holds for g = 3.

By the previous Lemma and assumptions (S1) and (S2), S is a blocking
set for the lines of PG(6,q?) In particular, the intersection of S with any
3-dimensional subspace Y of PG(6, ¢°) is also a blocking set with respect to
lines of ¥ and hence it contains at least ¢* 4 ¢? + 1 GF(¢?)-rational points;
see [4].

Lemma 3.4. Let X3 be the solid of PG(6,q?) satisfying condition (S4), that
is X3 meets S in exactly ¢* + ¢*> + 1 points. Then, I1 := SN X3 is a plane.

Proof. S N X3 must be a blocking set for the lines of PG(3,¢?); also it has
size ¢* + ¢? + 1. Tt follows from [4] that IT := S N X3 is a plane. O

Lemma 3.5. Let 33 be the solid of condition (S4). Then, any 4-dimensional
projective space Y4 through >3 meets S in a Hermitian cone with vertex a
line ¢1 and basis a Hermitian curve.

Proof. Consider all of the ¢% + ¢* + ¢ + 1 subspaces £3 of dimension 3 in
PG(6,¢?) containing II.

From Lemma 2.3 and condition (S3) we have |[£3NS| < ¢°+¢*+¢*+ 1.
Hence,

Sl= (@ +D)(@*+ P+ 1) <+ + PP+t + P +1=]S]

Consequently, [X3NS| = ¢® + ¢* +¢% + 1 for all ¥3 # 3 such that IT C ¥s.
Let C; := ¥4 NS. Counting the number of rational points of Cy by
considering the intersections with the ¢? + 1 subspaces ¥4 of dimension 3 in

>4 containing the plane II we get

Gl = P+ +P+1=¢+¢d+P+1.
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In particular, C; N Xf is a maximal surface of degree ¢ + 1; so it must split
in( ¢ 4 I\distinct planes through a line of II; see [17]. So C} consists of ¢34 1
distinct planes divided inte ¢ pencils, all containing II ; denote by £ the
family of these planes. Also for each 3§ # X3, there is a line ¢’ such that all
the planes of £ in ¥ pass through ¢. It is now straightforward to see that
any line contained in ] must necessarily belong to one of the planes of £
and no plane not in £ is contained in C7.

In order to get the result it is now enough to show that a line of ¥4
meets C in either 1, ¢+ 1 or ¢ + 1 points. To this purpose, let ¢ be a line
of 34 and suppose £ € Cy. Then, by Bezout’s theorem,

1< \éﬂCl\ <qg+1.
Assume [N Cy| > 1. Then we can distinguish two cases:

1. NI # (. If £ and II are incident, then we can consider the 3-
dimensional subspace ¥4 := (¢, II). Then ¢ must meet each plane of £
in ¥4 in different points (otherwise ¢ passes through the intersection
of these planes and then [¢ N C}| =1). As there are ¢ + 1 planes of £
in 3%, we have [{NCi| =q+ 1.

2. {NII = (. Consider the plane A generated by a point P € II and /.
Clearly A € L. The curve AN S has degree ¢+ 1 by construction, does
not contain lines (for otherwise A € £) and has ¢+ 1 GF(g¢?)-rational
points (by a counting argument). So from Lemma 2.4 it is a Hermitian
curve . It follows that £ is a ¢ + 1 secant.

We can now apply Lemma 2.6 to see that C; is a Hermitian cone. ]

Lemma 3.6. Let X3 be the space of condition (S4) and take X5 to be a
5-dimensional projective space with X3 C X5. Then S N X5 is a Hermitian
cone with vertex a point and basis a Hermitian hypersurface H(4,q?).

Proof. Let
2
DRSS 10 3 NNND ) I

be the 4-spaces through Y3 contained in 5. Put C; := 2}1 NS and II =
Y3NC; clearly I € ¥3 C ¥} and IT is a plane. Choose a plane II' C X} such
that m :=II' N Cy is a line m incident with IT but not contained in it. Let
Py := mNIL It is straightforward to see that in ¥} there is exactly 1 plane
through m which is a (¢* + ¢ 4 1)-secant, ¢* planes which are (g% + ¢ + 1)-
secant and ¢? planes which are (¢? + 1)-secant. Also P; belongs to the line
£1, the vertex of C1. There are now two cases to consider:



(a)

There is a plane II” # II' not contained in %} for all i = 1,...,¢*> + 1
with m CII” C SN 3.

We first show that the vertices of the cones C; := ¥4 NS are all concur-
rent. Consider m; := II” N ¥4, Then {m; : i = 1,...,¢*> + 1} consists
of ¢*> + 1 lines (including m) all through P;. Observe that for all 4,
the line m; meets the vertex ¢; of the cone C; in P; € II. This forces
P=P=--- :Pq2+1. So P, Egl,...,fthl.

Now let 34 be a 4-dimensional space in X5 with P; € ¥4; in particular
II ¢ 4. Put also X3 := 2411 N Y4 Clearly, r := X3 N1l is a line and
P; & r. So ¥3NS cannot be the union of ¢ + 1 planes, since if this were
to be the case, these planes would have to pass through the vertex #;.
It follows that X3 NS must be a Hermitian cone with vertex a point
and basis a Hermitian curve. Counting the points of W := ¥4, NS by
considering W N X} as i varies, we get

W= (*+1)¢" +¢ +1=(¢*+1)(¢" + 1);

in particular, W is a hypersurface of 34 of degree ¢ + 1, not containing
any plane’ and such that there exists a plane of ¥4 meeting W in just
one line (such planes exist in ¥3). So by the characterization of H(4, ¢%)
of [3] we have that W is a Hermitian variety (4, ¢°).

We also have that |S N X5| = |PyH(4,¢%)|. Let now r be any line of
H(4,¢%) = SNy and let © be the plane (r, P). The plane © meets %}
in a line ¢; C S for each i = 1,...,¢? 4+ 1 and these lines are concurrent
in P;. It follows that all the points of © are in S. This completes the
proof for the current case and shows that & N X5 is a Hermitian cone

PIH(47 q2)

All planes TI” with m C II” C SN 35 are contained in ¥ for some
i=1,...,¢°> + 1. We claim that this case cannot happen. We can
suppose without loss of generality m N¢; = P, and P ¢ {; for all
i=2,...,¢>+ 1. Since the intersection of the subspaces ¥} is 3, there
is exactly one plane through m in X5 which is (¢*4¢*+1)-secant, namely
the plane (¢1,m). Furthermore, in ¥} there are ¢* planes through m
which are (¢* + ¢ + 1)-secant and ¢? planes which are (¢ + 1)-secant.
We can provide an upper bound to the points of SN Y5 by counting the
number of points of § N X5 on planes in ¥5 through m and observing
that a plane through m not in X5 and not contained in S has at most
¢® + ¢ + 1 points in common with S N 5. So

SN < P+ +* + P+ 1



As [N Y5 = ¢® + ¢ + ¢* + ¢® + 1, all planes through m which are
neither (¢* + ¢% + 1)-secant nor (¢ + 1)-secant are (¢ + ¢ + 1)-secant.
That is to say that all of these planes meet S in a curve of degree ¢+ 1
which must split into ¢ + 1 lines through a point because of Lemma 2.1.

Take now P, € ¥3N S and consider the plane = := (m, P,). The line
(Py, P,) is contained in ¥%; so it must be a (q + 1)-secant, as it does
not meet the vertex line ¢ of Cy in Ei. Now, = meets every of Ei for
i=2,...,¢°> 4+ 1 in a line through P; which is either a l-secant or a
q + 1-secant; so

SNE <)+ +1=¢++1.

It follows |[SNZE| = ¢3+¢?>+1 and SNZE is a set of ¢+ 1 lines all through
the point P;. This contradicts our previous construction.

O]

Lemma 3.7. Let X3 be the space of condition (S4). Then, every hyperplane
of PG(6,¢%) meets S either in a non-singular Hermitian variety H (5, q%) or
in a cone over a Hermitian hypersurface H(4,q?).

Proof. Let us denote by A a hyperplane of PG(6,¢?). If A contains Y3 then,
from Lemma 3.6 it follows that A NS is a Hermitian cone PH(4,¢?).

Now assume that A does not contain ¥3. Denote by S, with j =
1,...,¢%> + 1 the ¢> + 1 hyperplanes through X!, where as before, Yiisad-
space containing ¥3. By Lemma 3.6 again we get that S NS = Pit(4,q%).
We count the number of rational points of ANS by studying the intersections
of $2 NS with A for all j € {1,...,¢> + 1}. Setting W, := SI NS N A,
Q:=XINSNA then

[SNAL=D "W\ Q+ 9.
j

If IT is a plane of A then € consists of ¢ + 1 collinear planes. Otherwise let
m be the line in which A meets the plane II. Then 2 is either a Hermitian
cone PyH(2,q?), or ¢+ 1 collinear planes according as the vertex P/ € II is
an external point with respect to m or not.

In the former case Wj; is a non singular Hermitian variety H(4,¢?) and
thus [SOA[ = (P + 1))+ +P+1="+¢ +¢ + ¢+ 1.

In the case in which €2 consists of ¢+ 1 collinear planes then W; is either
a PyH(3,q?) or a Hermitian cone with vertex a line and basis a Hermitian
curve H(2,¢?).

10



If there is at least one index j such that W; = 011(2,¢?) then, there
must be a 3-dimensional space X% of Sg NA meeting S in a generator. Hence,
from Lemma 3.6 we get that SN A is a Hermitian cone P'H (4, ¢?).

Assume that for all j € {1,...,¢>+ 1}, W; is a PyH(3,¢?). In this case

ISOAl = (P +1)¢" +(g+1)¢* +@+1 = " +¢" + ¢ +¢* +¢*+1 = [H(5,¢°)|.

We are going to prove that the intersection numbers of S with hyper-
planes are only two that is ¢° +¢" +¢® +¢* +® +1or ¢ +¢" +q¢* +¢> + 1.
Denote by x; the number of hyperplanes meeting S in ¢ rational points
withi € {¢"+¢"+ '+ + 1, + "+ + @ +1,¢° + 4"+ +¢* + > +1}.
Double counting arguments give the following equations for the integers x;:

i =q2+ ¢+ P+ ¢+t + 7 +1

Siizi =S|+ B+ ¢+t + 7 +1) (3.2)
(A

Yoimyi(i = Vg = [S|(IS| = 1)(¢® + ¢° + ¢* + ¢* + 1).

Solving (3.2) we obtain x4, 7 ;510211 = 0. In the case in which [S N
I| = |H(5,¢%)], since SN A is an algebraic hypersurface of degree ¢ + 1 not
containing 3-spaces, from [19, Theorem 4.1] we get that SN A is a Hermitian
variety H(5,¢?) and this completes the proof. ]

Proof of Theorem 1.1. The first part of Theorem 1.1 follows from Lemma
3.4. From Lemma 3.7, § has the same intersection numbers with respect to
hyperplanes and 4-spaces as a non-singular Hermitian variety of PG(6, ¢?),
hence Lemma 2.5 applies and S turns out to be a H(6,q¢?). O

Remark 3.8. The characterization of the non-singular Hermitian variety
H(4,¢?) given in [3] is based on the property that a given hypersurface is
a blocking set with respect to lines of PG(4, ¢?), see [3, Lemma 3.1]. This
lemma holds when g > 3. Since Lemma 3.2 extends the same property to
the case ¢ = 3 it follows that the result stated in [3] is also valid in PG(4, 3%).

4 Conjecture

We propose a conjecture for the general 2n-dimensional case.

Let S be a hypersurface of PG(2d,q?%), ¢ > 2, defined over GF(q¢?), not
containing d-dimensional projective subspaces. If the degree of S is q + 1
and the number of its rational points is |H(2d, q°)|, then every d-dimensional

11



subspace of PG(2d, %) meets S in at least 6,2(d — 1) := (¢**2 —1)/(¢* — 1)
rational points. If there is at least a d-dimensional subspace ¥4 such that
¥4 N S| = |PG(d — 1,¢%)|, then S is a non-singular Hermitian variety of
PG(2d,¢?).

Lemma 3.1 and Lemma 3.2 can be a starting point for the proof of this
conjecture since from them we get that & is a blocking set with respect to
lines of PG(2d, ¢?).
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