Process planning of multi-robot cells is usually a manual and time consuming activity, based on trials-and-errors. A co-manipulation problem is analysed, where one robot handles the work-piece and one robot performs a task on it and a method to find the optimal pose of the work-piece is proposed. The method, based on a combination of Whale Optimization Algorithm and Ant Colony Optimization algorithm, minimize a performance index while taking into account technological and kinematics constraints. The index evaluates process accuracy considering transmission elasticity, backslashes and distance from joint limits. Numerical simulations demonstrate the method robustness and convergence.

Optimal task positioning in multi-robot cells, using nested meta-heuristic swarm algorithms

Magnoni P.;Beschi M.
2018-01-01

Abstract

Process planning of multi-robot cells is usually a manual and time consuming activity, based on trials-and-errors. A co-manipulation problem is analysed, where one robot handles the work-piece and one robot performs a task on it and a method to find the optimal pose of the work-piece is proposed. The method, based on a combination of Whale Optimization Algorithm and Ant Colony Optimization algorithm, minimize a performance index while taking into account technological and kinematics constraints. The index evaluates process accuracy considering transmission elasticity, backslashes and distance from joint limits. Numerical simulations demonstrate the method robustness and convergence.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/528733
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact