Smart mechatronic systems and applications with actively controlled moving elements face increasing demands on size, motion speed, precision, adaptability, self-diagnostic, connectivity, new cognitive features, etc. Fulfillment of these requirements is essential for building smart, safe and reliable production complexes. This, however, implies completely new demands on control curricula of master degree students. The aim of this paper is to identify main gaps in motion control education and industrial practice with specific focus on multi-disciplinarity, i.e., contribute to a STEM education ecosystem.

Essential challenges in motion control education

Visioli A.
2019-01-01

Abstract

Smart mechatronic systems and applications with actively controlled moving elements face increasing demands on size, motion speed, precision, adaptability, self-diagnostic, connectivity, new cognitive features, etc. Fulfillment of these requirements is essential for building smart, safe and reliable production complexes. This, however, implies completely new demands on control curricula of master degree students. The aim of this paper is to identify main gaps in motion control education and industrial practice with specific focus on multi-disciplinarity, i.e., contribute to a STEM education ecosystem.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2405896319305336-main.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 759.01 kB
Formato Adobe PDF
759.01 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/528519
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 8
social impact