The miniaturization of an increasing number of complex hybrid micro-products is currently leading the development of several micro-components to manipulate and assemble, meeting various specifications related to the objects properties and the planned task. However, at the micro-scale, further challenges derive from the effects of surface forces between object and micro-gripper that have to be overcome for an effective and successful manipulation. When contact micro-grippers are used, specific solutions to support the release phase are needed. Further developments and novel tools should be developed for vacuum micro-grippers to actively release the components reliably and precisely. In this context, this paper presents a vacuum micro-gripper with an automatic releasing system able to overcome the adhesive forces simply and effectively. The paper reports the results of a preliminary computational fluid dynamics analysis and the development of a numerical model able to represent the main gripper characteristics and derive a first design procedure.

A preliminary fluid dynamic model of a vacuum micro-gripper with integrated release system

Ruggeri, Serena;Ghidoni, Antonio;Morelli, Alessandro;Legnani, Giovanni;Lezzi, Adriano Maria;Fassi, Irene
2018-01-01

Abstract

The miniaturization of an increasing number of complex hybrid micro-products is currently leading the development of several micro-components to manipulate and assemble, meeting various specifications related to the objects properties and the planned task. However, at the micro-scale, further challenges derive from the effects of surface forces between object and micro-gripper that have to be overcome for an effective and successful manipulation. When contact micro-grippers are used, specific solutions to support the release phase are needed. Further developments and novel tools should be developed for vacuum micro-grippers to actively release the components reliably and precisely. In this context, this paper presents a vacuum micro-gripper with an automatic releasing system able to overcome the adhesive forces simply and effectively. The paper reports the results of a preliminary computational fluid dynamics analysis and the development of a numerical model able to represent the main gripper characteristics and derive a first design procedure.
2018
9780791851791
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/525963
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact