Powered exoskeleton can restore locomotion to spinal cord injury subjects but measuring their impact on the upper limbs is critical, since repeated excessive loads are strongly correlated to chronic pain at shoulder level. This paper presents a novel set of instrumented crutches, able to measure force exerted on the ground during walking sessions, thanks to embedded time-of-flight cameras and force sensors. The force sensors, along with an inertial module, assess the force acting on the upper limbs, while the time-of-flight cameras detects the gait phases looking at the feet position. The aim is to provide an affordable measuring system, without requiring a fully instrumented gait-lab, allowing the user-robot interaction to be measured in a more natural setting, closer to the foreseen working condition. The instrumented crutches are fully independent of any other instrumentation to allow a comparison of different exoskeleton models in terms of upper limb involvement.

Monitoring upper limbs during exoskeleton-assisted gait outdoors

Lancini, Matteo
;
Pasinetti, Simone;MONTINI, VALERIA;Sansoni, Giovanna
2019-01-01

Abstract

Powered exoskeleton can restore locomotion to spinal cord injury subjects but measuring their impact on the upper limbs is critical, since repeated excessive loads are strongly correlated to chronic pain at shoulder level. This paper presents a novel set of instrumented crutches, able to measure force exerted on the ground during walking sessions, thanks to embedded time-of-flight cameras and force sensors. The force sensors, along with an inertial module, assess the force acting on the upper limbs, while the time-of-flight cameras detects the gait phases looking at the feet position. The aim is to provide an affordable measuring system, without requiring a fully instrumented gait-lab, allowing the user-robot interaction to be measured in a more natural setting, closer to the foreseen working condition. The instrumented crutches are fully independent of any other instrumentation to allow a comparison of different exoskeleton models in terms of upper limb involvement.
2019
978-3-030-01886-3
978-3-030-01887-0
File in questo prodotto:
File Dimensione Formato  
WeRob2018_ExtendedAbstract_Lancini.pdf

accesso aperto

Tipologia: Full Text
Licenza: DRM non definito
Dimensione 267.88 kB
Formato Adobe PDF
267.88 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/510653
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact