We present that the hole and electron transport properties in an ambipolar semiconducting polymer can be controlled with thermal annealing. We also show that the split-gate structure offers more accurate characterization for the hole and electron transport parameters such as saturation (μsat.), linear mobility (μlin.), turn- on (Vto), and threshold voltage (Vth) than conventional ambipolar transistor does. As a result, well-balanced hole and electron conduction could be achieved in an ambipolar semiconducting poly-(diketopyrrolopyrrole-terthiophene) (PDPP-3T). It was also observed that hole de-doping (electron doping-like) occurred with thermal annealing, which removed the dipole formation by atmospheric oxygen. Such a recuperation from the atmospherically doped to intrinsically un-doped state changed the characteristics in hole and electron transport, which agreed with the shift in the measured ultraviolet photoelectron spectroscopy (UPS) spectrum. A complementary logic inverter with balanced charging and discharging was demonstrated based on the findings.

Balancing Hole and Electron Conduction in Ambipolar Split-Gate Thin-Film Transistor using Thermal Annealing

TORRICELLI, Fabrizio;GHITTORELLI, MATTEO;
2016-01-01

Abstract

We present that the hole and electron transport properties in an ambipolar semiconducting polymer can be controlled with thermal annealing. We also show that the split-gate structure offers more accurate characterization for the hole and electron transport parameters such as saturation (μsat.), linear mobility (μlin.), turn- on (Vto), and threshold voltage (Vth) than conventional ambipolar transistor does. As a result, well-balanced hole and electron conduction could be achieved in an ambipolar semiconducting poly-(diketopyrrolopyrrole-terthiophene) (PDPP-3T). It was also observed that hole de-doping (electron doping-like) occurred with thermal annealing, which removed the dipole formation by atmospheric oxygen. Such a recuperation from the atmospherically doped to intrinsically un-doped state changed the characteristics in hole and electron transport, which agreed with the shift in the measured ultraviolet photoelectron spectroscopy (UPS) spectrum. A complementary logic inverter with balanced charging and discharging was demonstrated based on the findings.
2016
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/493935
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact