In this paper we present a statistical framework based on hidden Markov models (HMMs) for video skimming. A chain of HMMs is used to model subsequent story units: HMM states represent different visual-concepts, transitions model the temporal dependencies in each story unit, and stochastic observations are given by single shots. The skim is generated as an observation sequence, where, in order to privilege more informative segments for entering the skim, dynamic shots are assigned higher probability of observation. The effectiveness of the method is demonstrated on a video set from different kinds of programmes, and results are evaluated in terms of metrics that assess the content representational value of the obtained video skims.

Hidden Markov Models for Video Skim Generation

BENINI, Sergio;MIGLIORATI, Pierangelo;LEONARDI, Riccardo
2007-01-01

Abstract

In this paper we present a statistical framework based on hidden Markov models (HMMs) for video skimming. A chain of HMMs is used to model subsequent story units: HMM states represent different visual-concepts, transitions model the temporal dependencies in each story unit, and stochastic observations are given by single shots. The skim is generated as an observation sequence, where, in order to privilege more informative segments for entering the skim, dynamic shots are assigned higher probability of observation. The effectiveness of the method is demonstrated on a video set from different kinds of programmes, and results are evaluated in terms of metrics that assess the content representational value of the obtained video skims.
2007
076952818X
File in questo prodotto:
File Dimensione Formato  
BLM_WIAMIS-2007_full-text.pdf

gestori archivio

Descrizione: BLM_WIAMIS-2007_full-text
Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 181.71 kB
Formato Adobe PDF
181.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
BLM_WIAMIS_2007_post-print.pdf

accesso aperto

Descrizione: BLM_WIAMIS_2007_post-print
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 101.73 kB
Formato Adobe PDF
101.73 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/14940
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact