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Abstract

In this paper we present a statistical framework based

on hidden Markov models (HMMs) for video skimming. A

chain of HMMs is used to model subsequent story units:

HMM states represent different visual-concepts, transitions

model the temporal dependencies in each story unit, and

stochastic observations are given by single shots. The skim

is generated as an observation sequence, where, in order to

privilege more informative segments for entering the skim,

dynamic shots are assigned higher probability of observa-

tion. The effectiveness of the method is demonstrated on

a video set from different kinds of programmes, and results

are evaluated in terms of metrics that assess the content rep-

resentational value of the obtained video skims.

1. Introduction

In the last years, with the proliferation of digital TV

broadcasting, dedicated internet websites, private recording

of home video, a large amount of video information has

been made available to end-users. In this scenario, video

abstraction techniques may represent a key component of

a practical video-content management system. By watch-

ing at a condensed video, a viewer may be able to assess

the relevance of a programme before committing time, thus

facilitating typical tasks such as browsing, organizing and

searching content. Regarding videos which are produced

according to a script, such as movies, news and cartoons,

two types of video abstraction have been investigated so

far, namely video static summarization and video skimming.

The first one is a process that selects a set of salient key-

frames to represent content in a compact form and present

it to the user as a static programme preview. Video skim-

ming instead, also known as video dynamic summarization,

tries to condense the original video in the more appealing

form of a shorter video clip. The generation of a skim can

be viewed as the process of selecting and gluing together

proper video segments under some user-defined constraints

and according to given criterions. End-user constraints are

usually defined by the time committed by the user to watch

the skim, which in the end determines the final skim ratio.

On the other hand, skimming criterions used to select video

segments range from the exploitation of the hierarchical or-

ganization of video in scenes and shots as in [5], the use of

motion information [4], or the insertion of audio, visual and

text markers [7].

In this paper, in order to derive the skim, we propose

to combine the information deriving from the story struc-

ture with the characterization of the motion dynamics of

shots. Through partial decoding of the compressed stream,

we compute a motion descriptor which inherently estimates

the contribution of each shot in term of “content informa-

tiveness” and determines whether the shot will be included

in the final skim. The shot sequence which forms the skim is

obtained as a series of observations of a HMM chain, where

each HMM models the structure of a semantic scene. In the

past HMM has been successfully applied to different do-

mains such as speech recognition, genome sequence analy-

sis, etc. For video analysis, HMMs have been used to distin-

guish different genres [8], and to delineate high-level struc-

tures of soccer games [9]. In this work instead, HMMs are

used as a unified statistical framework to represent visual-

concepts and to model the temporal dependencies in story

units with the aim of video skimming.

The paper is organized as follows. Section 2 presents the

criterions adopted to realize the skim. In Section 3 we char-

acterize the general dynamics of shots by a motion descrip-

tor. Section 4 describes how to model each story unit by a

HMM. In Sections 5 and 6 the video skims are generated

and evaluated, while in Section 7 conclusions are drawn.

2 Skimming criterions

We propose that the time allocation policy for realising a

skim should take into account the following criterions:

“Coverage”: the skim should include all the parts of the

story structure into the synopsis (i.e., all the story units);

“Representativeness”: each story unit should be repre-

sented proportionally to its duration in the original video;

“Structure informativeness”: the information which is in-

troduced by the film editing process, especially that con-

veyed by the shot patterns inside story units (e.g., dialogues,



progressive scenes, etc.) should be included in the skim;

“Content informativeness”: to represent each story unit, the

most “informative” video segments should be preferred.

In the next, we start investigating the content informative-

ness of shots, by relying on a measure of the motion activity.

3 Motion activity analysis

As stated in [3] the intensity of motion activity in a video

segment is in fact a measure of “how much” the content is

changing. Thus motion activity can be interpreted as a mea-

sure of the “entropy” (in a wide sense) of a video segment.

We characterize the motion activity of shots by extracting

the motion vector (MV) field of P-frames from the com-

pressed MPEG stream, with low computational cost.

The extracted raw MV field turns out to be normally

rough and erratic; however, after being properly filtered,

the MVs can be useful to characterize the general motion

dynamics of a sequence. The filtering process applied in-

cludes first removing the MVs next to image borders which

tend to be unreliable, then using a texture filter, followed by

a median filter. The texture filter is needed since, in the case

of low-textured uniform areas, the correlation methods used

to estimate motion often produce spurious MVs.

3.1 Motion Intensity

Of course, the perceived motion activity in a video is

higher when the objects in the scene move faster. In this

case the magnitudes of the MVs of the macro-blocks (MBs)

that make up the objects are significant, and one simple

measure of motion intensity can be extracted from the P-

frame by computing the mean µP of the magnitudes of mo-

tion vectors belonging to inter-coded MBs only (intra-coded

MBs have no MVs). However, most of the perceived inten-

sity in a video is due to objects which do not move accord-

ing to the uniform motion of camera. Thus, a good P-frame-

based measure of motion intensity is given by the standard

deviation σP of the magnitudes of motion vectors belonging

to inter-coded MBs.

This measure can be also extended to characterize the

motion intensity of a shot S, by averaging the measures ob-

tained on all the P-frames belonging to the shot. MPEG7

Motion Activity descriptor [3] is also based on a quantized

version of the standard deviation of MVs magnitudes. For

our purposes, to each shot S is assigned its motion inten-

sity value MI(S) in its not-quantized version. This value

MI(S) tries to capture the human perception of the “in-

tensity of action” or the “pace” of a shot, by considering the

overall intensity of motion activity in the shot itself (without

distinguishing between the camera motion and the motion

of objects present in the scene). Since this is in fact a mea-

sure of “how much” the content of a video is changing, it

can be interpreted as a measure of the “entropy” of the video

segment, and can be used for summarization purposes.

4 HMM for LSU representation

In [10] it is shown that after the removal of cut-edges of

a Scene Transition Graph (STG), each connected sub-graph

well represents a Logical Story Unit (LSU), i.e., “a sequence

of contiguous and interconnected shots sharing a common

semantic thread”, which is the best computable approxima-

tion to a semantic scene [2]. In particular sub-graph nodes

are clusters of visually similar and temporally close shots,

while edges between nodes give the temporal flow inside

the LSU, as shown in Figure 1.

Figure 1. Logical Story Units in a STG.

Starting from the STG representation, each LSU can be

equivalently modeled by a HMM. This is a discrete state-

space stochastic model which works well for temporally

correlated data streams, where the observations are a prob-

abilistic function of a hidden state [6]. Such a modeling

choice is supported by the following considerations ([9]):

i. Video structure can be described as a discrete state-space,

where each state is a conveyed concept (e.g., “man face”)

and each state-transition is given by a change of concept;

ii. The observations of concepts are stochastic since video

segments seldom have identical raw features even if they

represent the same concept (e.g., more shots showing the

same “man face” from slightly different angles);

iii. The sequence of concepts is highly correlated in time,

especially for scripted-content videos (movies, etc.) due to

the presence of editing effects and typical shot patterns in-

side scenes (i.e., dialogues, progressive scenes, etc.).

For our aims HMM states representing concepts will cor-

respond to distinct clusters of visually similar shots; state

transition probability distribution will capture the shot pat-

tern structure of the LSU, and shots will constitute the ob-

servation set (as shown in Figure 2).

4.1 HMM definition

Formally, a HMM representing an LSU is specified by:

• N , the number of states. Although the states are hidden,



Figure 2. LSU modeling by HMMs.

in practical applications there is often some physical sig-

nificance associated to the states. In this case we define

that each state corresponds to a distinct node of a STG sub-

graph: each state is one of the N clusters of the LSU con-

taining a number of visually similar and temporally close

shots. We denote states as C = {C1, C2, . . . , CN}, and the

state at time t as qt.

• M , the number of distinct observation symbols. The

observation symbols correspond to the output of the sys-

tem being modeled. In this case, each observation symbol

S = {S1, S2, . . . , SM} is one of the M shots of the video.

• ∆ = {δij}, the state transition probability distribution:

δij = P [qt+1 = Cj |qt = Ci], 1 ≤ i, j ≤ N

Transition probabilities are computed as the relative fre-

quency of transitions between clusters in the STG, i.e., δij is

given by the ratio of the number of edges going from cluster

Ci to Cj to the total number of edges departing from Ci.

• Σ = {σj(k)}, the observation symbol distribution, where

σj(k) = P [Sk at t|qt = Cj ], 1 ≤ j ≤ N, 1 ≤ k ≤ M

We define the observation symbol probability in state Cj ,

that is σj(k), as the ratio of the motion intensity of the shot

Sk to the total motion intensity of the cluster, that is:

σj(k) =

{

MI(Sk)
MI(Cj)

if Sk ∈ Cj

0 otherwise ,

where MI(Cj) is defined as the sum of all the motion in-

tensity of the shots belonging to cluster Cj .

• π = {πi}, the initial state distribution, where:

πi = P [q1 = Ci], 1 ≤ i ≤ N .

In order to preserve the information about the entry point of

each LSU, πi = 1 if the cluster Ci contains the first shot of

the LSU, otherwise πi = 0. Therefore a complete specifi-

cation of an HMM requires two model parameters (N and

M ), the observation symbols S, and the probability distrib-

utions ∆, Σ and π. Since the set S = {S1, S2, . . . , SM} is

common to all the HMMs, for convenience, we can use the

compact notation Λ = (∆, Σ, π,N) to indicate the com-

plete parameter set of the HMM representing an LSU.

5 Stochastic skim generation

In order to generate an informative skim, the following

solutions have been adopted to fulfill all the skimming cri-

terions stated in Section 2.

Coverage: Since the skim should include all the semanti-

cally important story units, each detected LSU participates

to it (where the skim ratio is subject to a minimal value).

Representativeness: Let l1, l2, . . . , ln be the lengths of the

n LSUs that compose the original video. Then in the skim,

for each λi, a time slot of length ξi is reserved, where ξi is

proportional to the duration of λi in the original video.

Structure informativeness: In order to include in the synop-

sis the information conveyed by the shot patterns inside the

story units, a skimmed version of each LSU λ can be gener-

ated as an observation sequence of the associated HMM, Λ,

that is:

O = O1O2 · · · ,

where each observation O, is one of the symbols from S.

The sequence is generated as follows:

1. Choose the initial state q1 = Ci according to the initial

state distribution π. Set t = 1;

2. While (total length of already concatenated shots) <

(time slot ξ assigned to the current LSU)

(a) Choose Ot = Sk according to the symbol proba-

bility distribution in state Ci, i.e., σi(k);

(b) Transit to a new state qt+1 = Cj , according to

the state transition probability for state Ci, i.e.,

δij ;

(c) Set t = t + 1;

The above procedure is then repeated for all LSUs. Finally,

all the obtained sequences of observed shots are concate-

nated in order to generate the resulting skim.

Content informativeness: In order to privilege the more “in-

formative” shots, the observation symbol probability distri-

bution Σ depends on the shot motion intensity. In particular

the higher is the motion present in a shot Sk of the cluster

Cj , the higher will be σj(k), i.e., Sk will be more likely

chosen for the skim. Since motion activity can be inter-

preted as a measure of the “entropy” of a video segment,

by assigning higher probability of observation to more dy-

namic shots, we privilege “informative” segments for the

skim generation. At the same time, we avoid to discard

a-priori low-motion shots, that can be chosen as well for

entering the skim, even if with lower probability. More-

over, once that one shot is chosen for the video skim, it is

removed from the list of candidates for further time slots,

at least until all shots from the same cluster are employed

too. This prevents the same shot from repetitively appear-

ing in the same synopsis, and at the same time it favorites



the presence of low-motion shots, if the desired skim ratio

is big enough. Therefore, as it should be natural, in very

short skims, “informative” shots are likely to appear first,

while for longer skims, even less “informative” shots can

enter the skim later on.

6 Performance evaluation

To quantitatively investigate the performance of video

skimming, we carried out some experiments using the video

sequences in Table 1 for a total time of about four hours of

video and more than two thousands shots.

Table 1. Video data set.
No. Video (genre) Length Shots

1 Portuguese News (news) 47:21 476

2 Notting Hill (movie) 30:00 429

3 A Beautiful Mind (movie) 17:42 202

4 Pulp Fiction (movie) 20:30 176

5 Camilo & Filho (soap) 38:12 140

6 Riscos (soap) 27:37 423

7 Misc. (basket/soap/quiz) 38:30 195

8 Don Quixotte (cartoon) 15:26 188

For the evaluation of the skims, the method and the cri-

terions of “informativeness” and “enjoyability” adopted in

[5] have been used. Informativeness assesses the capabil-

ity of the statistical model of maintaining content, cover-

age, representativeness and structure, while reducing redun-

dancy. Enjoyability instead assesses the performance of the

motion analysis in selecting perceptually enjoyable video

segments for the skim. Starting from the LSU segmentation

results we presented in [1], we generated eighteen dynamic

summaries with their related soundtracks: for each video

two associated skims have been produced, one with 10%
of the original video length and the other with the 25%.

Ten students assessed the quality of the skims by watch-

ing first the 10% one, then the 25%, and finally the original

video. After watching a skim, each student assigned two

scores ranging from 0 to 100, in terms of informativeness

and enjoyability. Then students were also requested to give

scores to the original videos in case they thought that these

were not 100% informative or enjoyable. On this basis, af-

ter watching the original, the students were also given the

chance to modify the scores assigned before to the associ-

ated skims. Finally the scores assigned to skims have been

normalized to the scores given to the original video.

In these experiments, average normalized scores for en-

joyability are around 72% and 80%, respectively, for video

skims of 10% and 25% length. Regarding informativeness,

average normalized scores are around 68% and 81%, re-

spectively. These results are comparable with results pre-

sented in most recent works on video skims [5], but they

have been obtained on a larger set of videos of different

genres. Moreover, since the skim generation does not take

into account the original shot order (i.e., in the skim a shot

which is later in the original video can appear before an-

other shot which is actually prior to it, as it sometimes hap-

pens in commercial trailers), nevertheless the obtained re-

sults suggest that the skim preserves its informativeness and

that the viewer is not particularly disturbed if some shots are

shown in non sequential order.

7 Conclusions

In this paper a method for video skim generation has

been proposed. This technique is based on a previous high-

level video segmentation and on the use of HMMs. The final

skim is a sequence of shots which are obtained as observa-

tions of the HMMs corresponding to the story units, and by

a motion measure which roughly estimates each shot “in-

formativeness”. The effectiveness of the proposed solution

has been demonstrated in terms of informativeness and en-

joyability on a large video set coming from different genres.
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