In this work we deal with lossy compression of biomedical volumes. By force of circumstances, diagnostic compression is bound to a subjective judgment. However, with respect to the algorithms, there is a need to shape the coding methodology so as to highlight beyond compression three important factors: the medical data, the specic usage and the particular end-user. Biomedical volumes may have very dierent characteristics which derive from imaging modality, resolution and voxel aspect ratio. Moreover, volumes are usually viewed slice by slice on a lightbox, according to dierent cutting direction (typically one of the three voxel axes). We will see why and how these aspects impact on the choice of the coding algorithm and on a possible extension of 2D well known algorithms to more ecient 3D versions. Cross-correlation between reconstruction error and signal is a key aspect to keep into account; we suggest to apply a non uniform quantization to wavelet coefficients in order to reduce slice PSNR variation. Once a good neutral coding for a certain volume is obtained, non uniform quantization can also be made space variant in order to reach more objective quality on Volumes of Diagnostic Interest (VoDI), which in turns can determine the diagnostic quality of the entire data set.

Diagnostic Compression of Biomedical Volumes

SIGNORONI, Alberto;LEONARDI, Riccardo
2000-01-01

Abstract

In this work we deal with lossy compression of biomedical volumes. By force of circumstances, diagnostic compression is bound to a subjective judgment. However, with respect to the algorithms, there is a need to shape the coding methodology so as to highlight beyond compression three important factors: the medical data, the specic usage and the particular end-user. Biomedical volumes may have very dierent characteristics which derive from imaging modality, resolution and voxel aspect ratio. Moreover, volumes are usually viewed slice by slice on a lightbox, according to dierent cutting direction (typically one of the three voxel axes). We will see why and how these aspects impact on the choice of the coding algorithm and on a possible extension of 2D well known algorithms to more ecient 3D versions. Cross-correlation between reconstruction error and signal is a key aspect to keep into account; we suggest to apply a non uniform quantization to wavelet coefficients in order to reduce slice PSNR variation. Once a good neutral coding for a certain volume is obtained, non uniform quantization can also be made space variant in order to reach more objective quality on Volumes of Diagnostic Interest (VoDI), which in turns can determine the diagnostic quality of the entire data set.
2000
9521504447
9789521504440
File in questo prodotto:
File Dimensione Formato  
SL_EUSIPCO-2000 full-text.pdf

accesso aperto

Descrizione: SL_EUSIPCO-2000 full-text
Tipologia: Full Text
Licenza: PUBBLICO - Creative Commons 3.6
Dimensione 240.71 kB
Formato Adobe PDF
240.71 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/14302
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact