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ABSTRACT

In this work we deal with lossy compression of biomedi-
cal volumes. By force of circumstances, diagnostic com-
pression is bound to a subjective judgment. However,
with respect to the algorithms, there is a need to shape
the coding methodology so as to highlight beyond com-
pression three important factors: the medical data, the
speci�c usage and the particular end-user. Biomedical
volumes may have very di�erent characteristics which
derive from imaging modality, resolution and voxel as-
pect ratio. Moreover, volumes are usually viewed slice
by slice on a lightbox, according to di�erent cutting di-
rection (typically one of the three voxel axes). We will
see why and how these aspects impact on the choice
of the coding algorithm and on a possible extension of
2D well known algorithms to more e�cient 3D versions.
Crosscorrelation between reconstruction error and sig-
nal is a key aspect to keep into account; we suggest to
apply a non uniform quantization to wavelet coe�cients
in order to reduce slice PSNR variation. Once a good
�neutral� coding for a certain volume is obtained, non
uniform quantization can also be made space variant in
order to reach more objective quality on Volumes of Di-
agnostic Interest (VoDI), which in turns can determine
the diagnostic quality of the entire data set.

1 INTRODUCTION

In the �eld of biomedical signal compression there is a
strong requirement of errorless reconstruction. This de-
rives from di�erent and apparent obvious motivations,
most importantly to overcome legal and diagnostic is-
sues. However, even in its most e�ective implementa-
tions, lossless compression cannot overcome a data de-
pendent [1] compression factor which remain too low for
e�cient storage and transmission in a variety of PACS
[2] application contexts. By the way, diagnostic cod-
ing has been introduced in the case of image coding [3]
and it is based on the diagnostic quality de�nition: �a
lossy reconstructed biomedical volume can be accepted
from a diagnostic quality point of view, if a physician
with same quali�cation level can establish the same di-
agnosis on the reconstructed volume (with all coding

information enclosed) with respect to the original one�.

In this work, a wavelet based approach is considered in
the case of volumetric compression, using MRI and CT
anatomical data (Sec.2). Volumetric compressed ma-
terial may exhibit peculiar artifacts depending on the
visualization strategy mainly because of signal to er-
ror crosscorrelation. This must be taken into account
to improve on the coding scheme. In Sec.3 an anal-
ysis of these sorts of artefacts is carried out. Let us
stress that in the present JPEG2000 standardization
process, even if biomedical imaging is considered, 3D
coding is not directly addressed and the coding strategy
does not take into account the implications of the above
concern. Moreover, video coding implements 2D+t pre-
dictive motion oriented coding schemes with paradigms
that we cannot consider adequate for static volumes,
given the lack of moving objects.

2 3D WAVELET CODING

Zerotree-wavelet coding [4, 5], with all its variants, cur-
rently represents one of the the most e�cient ways for
progressive image compression, with the possibility to
embed lossy and lossless coding in a unique multiresolu-
tion framework. Progressive coding is essential for com-
municating and archiving images and volumes. This is
due to the possibility to re�ne, even in a spatially lo-
calized fashion, or to erode the compressed bit-stream
without having to recode the entire data. CT and MRI
volumetric scans produce a set of samples (voxels) on a
3D grid (usually regular but not necessarily isotropic)
and quantize them on a gray level scale with �ne gran-
ularity (usually 12bit/voxel stored using a 16 bit short
integer) but with a relatively low SNR [1]. The poten-
tial of a 3D extension of zerotree schemes has already
been presented by some authors[6, 7]. In order to have
a perfect reconstruction, it is necessary to perform an
integer-to-integer wavelet transform (WT), but in prac-
tice it is useless to spend bit to reconstruct the signal
below its source noise variance. Integer WT may be
used to lower the computational cost, but �oating point
representations are better suited for coding gain opti-
mality as well as for coe�cient manipulation before and
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Figure 1: Di�erent results for 3D (PSNR=37dB) and repeated 2D(z) coding (32.5dB) at the same CR=52.

after quantization. For example a product mask may be
applied to the wavelet coe�cients to highlight Regions
or Volumes of Diagnostic Interest (RoDI [3], VoDI) or
to perform a non-uniform quantization of subbands.

2.1 The Voxel anisotropy problem

For the greater part of imaging modalities, the spectral
characteristics of each slice follow the typical 1/f model
for natural images well, whereas a good match with the
1/f model along the third dimension strongly depends
on the voxel resolution anisotropy with respect to the
isotropic cube. In other words, some energy compaction
de�ciencies of the WT along the z dimension may oc-
cur due to the typical lower resolution in the slicing di-
rection. This may compromise the zerotree algorithm
performance due to a breakdown of the 1/f spectral
characteristics. We will highlight, giving an example,
the dependencies of 3D wavelet coding with respect to
the image source and z-resolution. As a reference we
compare 3D coding performance over that of a set of
repeated 2D ones.

2.2 3D coding gain over repeated 2D

In Tab.1, a comparison of coding performance is shown
between two di�erent imaging data sets, i.e. a CT-
abdomen and a MRI-brain (256x256)x128 slice sets,
which has been subsampled to obtain di�erent z-
resolution datasets (128 and 64 slices). The initial data
sets have been produced with anisotropic voxels of re-
spectively 2x2x4mm and 0.78x0.78x1.17mm spatial res-
olution. As for the decomposition, we use the set of
biorthogonal �lters proposed in [4]. The 3D separa-
ble WT decomposition is performed with 5 levels for
128 slices dataset and with 4 levels for the 64 resliced
ones. It is reasonable to consider only a separable WT
implementation for computational e�ciency, and di�er-
ent basis along each dimension, in order to better deal
with anisotropy of the voxel characteristics. As cod-
ing algorithm we perform SPIHT [5] coding repeated on
each slice and a 3D version of SPIHT. The total bit-
stream lengths generated at various target PSNR dis-

tortion are used to compare the resulting compression
ratios (CR=12bpp/stream-bpp). Here the PSNR value
of 45dB represents an absolute visually lossless qual-
ity, even if reconstructed images are magni�ed and com-
pared at high zoom factors. As we can notice, the CR
%gain of the 3D algorithm over the 2D(z) algorithm is
more important for the CT data set. On the other hand,
for the subsampled 64 slice MRI there is only a little gain
in using the 3D coding approach. Usually, MRI data are
more detailed and noisy with respect to CT ones, thus
the WT does not allow a good decorrelation while high
predictivity of coe�cients (by zerotree) in the z direc-
tion is weakened. In Fig.1, we show an example of 2D(z)
and 3D coding results for the slice 40 of CT data set.
For low z resolution datasets it is sometimes better to
use shorter �lters in the z direction, such as the haar
basis [6]. An alternative is to change the wavelet repre-
sentation in order to design a predictive coding schemes
along z. This is an open research area, because it is
important, given the imaging modality and the voxel
aspect ratio and resolution, to �nd an optimal wavelet
representation in terms of coding e�ciency. Moreover,
there are other issues that must be taken into account
in order to envisage a �diagnostic compression�.

3 VOLUMETRIC CODING ERRORS

It is well known that the reconstruction error autocorre-
lation and the error to signal cross-correlation depends
on the decomposition structure, the quantization model
and the reconstruction �lter shape. A quantitative anal-
ysis of the phenomena is out of the scope of this short
contribution, but we want to summarize some deriva-
tions of this type of analysis in a qualitative manner.
A 2D(z) coding strategy has the advantage of allow-

ing a precise PSNR control over each single slice, as de-
picted in the above experiment and shown in Fig.3(a);
in the 3D case this is not guaranteed due to the quan-
tization process used in the zerotree coding, and to the
spreading of quantization error in a localized fashion
(ringing) by the inverse WT. Nevertheless, this advan-
tage is not real, as the radiologist does not necessarily
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Figure 2: MRI slices originated by a volume reslicing on y. For both the coding modalities a target distortion PSNR
of 35 dB was used, but some streaking artifacts, due to error z-uncorrelation, are evident on the right most image.

Data CT CT MRI MRI

128 64 128 64

2D 3D/g 2D 3D/g 2D 3D/g 2D 3D/g

D(dB) CR �>

45 7.8 14.3 7.5 9.3 5.5 5.7 5.5 5.5

83% 24% 4% 0%

40 14.1 30.7 13.7 18.4 9.3 9.6 9.2 9.1

118% 34% 3% -1%

37 20.8 53.1 19.9 29.3 16.2 18.2 16.0 16.1

155% 47% 12% 0.6%

35 28.5 74.4 26.9 43.9 25.8 31.9 25.2 26.0

161% 63% 24% 3.2%

Table 1: Comparison between 2D(z) and 3D coding on
di�erent data sets. For each dataset and for each target
PSNR distortion D (dB), repeated 2D and 3D coding
are performed, and the compression ratio (CR) and CR
% gain (g) of 3D over 2D(z) is quoted.

consider only the z slicing direction for diagnostic pur-
poses. He/she can use any cutting plane, for example
following the x or y axes. Fig.3(b) shows the 2D PSNR
vs y-slice number in an interval taken from the same
dataset of Fig.3(a). From a perceptual point of view,
the artifacts caused by 3D coding are always defocus-
ing and eventually ringing (depending on the CR, the
cut direction vs voxel anisotropy, the zooming factor...);
in other words, these artefacts are correlated with the
signal characteristics. In the 2D case, instead, the quan-
tization may introduce objectionable errors along the z
dimension, because the reconstructed signal lacks corre-
lation in such direction. This determines uncontrollable
mismatch which, at medium or low bit rates, may alter
the anatomical structures in the data set, as can be seen
in Fig.2.

3.1 PSNR constancy

Fig.3(a,b) show a regular oscillation of the per-slice
PSNR curve. The amplitude and frequency of the oscil-

lation is shaped by the quantization inverse WT error of
the �rst level wavelet coe�cients (higher freq.). Despite
the localized PSNR control on z slice for 2D(z) coding,
the PSNR oscillation with respect to other slicing axes
is nearly the same for both coders(Fig.3(b)). This su-
perposition is due to the intrinsic separable nature of
embedded wavelet coding which is robust with respect
to PSNR control in one direction. Being the slices at ad-
jacent position quite similar one to the other, the PSNR
variation may be perceived on the screen lightbox even
at medium-low rates, causing objectionable artifacts and
lowering the reliability of the coding. It is important to
�nd some methodology to lower the amplitude of the
oscillation. We propose to operate a non uniform quan-
tization on the �rst stages of wavelet coe�cients.

3.2 Non-uniform quantization

In Fig.3(c) three curves are shown representing the ef-
fect of two WT coe�cient level weighting. Multiplica-
tive weight are applied prior to SPIHT quantization and
taken o� prior to inverse WT. The measurements are
performed at the same CR. It is easy to see the imme-
diate bene�t in terms of PSNR oscillations, while the
global PSNR performance get slightly worse, as it can
be expected. Results on z slicing directions re�ects what
happens in the other direction as well. The oscillation
standard deviation in the original case is �0.4dB, while
weighting the �rst WT level by a factor of 2, the � drop
to �0.2dB, and with 1st WT level weight, WTlw=4 and
2nd WTlw=2, � = �0.13dB. This kind of masking is in
accordance with the results of perceptual studies aim-
ing to obtain a good match between subband weighting
and HVS characteristics. A combined study should give
optimal results. Thus, even if global PSNR worsens this
does not imply a worse image quality. It is also interest-
ing to note how the PSNR oscillation pattern changes
if we reduce quantization errors for example in the �rst
WT level. In Fig.3(d) we apply two masks: M1 consists
of 1st WTlw=2, and M2 is 1st WTlw=4. Each cod-
ing is stopped when a 10 bit-plane quantization re�ne-



ment is performed on each WT coe�cient. With M2
the 1st level coe�cients are best represented (12 bit-
planes WT precision) but the PSNR oscillation pattern
is now dominated from higher level coe�cients. It is in-
teresting to see how with M1 we take advantage of a fa-
vorable intermediate situation between the unweighted
coding pattern (� = �0.30dB) and what corresponds
to M2 (� = �0.50dB). With M1 we obtain a PSNR
� = �0.17dB.

4 CONCLUSION

In this presentation we have seen that 2D(z) coding is
not well suited for compression of biomedical volumes
because it is less e�cient with respect to 3D coding
and it allows a distortion control only along z while
presenting PSNR inter-slice oscillations as well as po-
tential objectionable artifact considering other slicing
directions. We have proposed 3D SPIHT coding with
non uniform quantization of subbands in order to reduce
PSNR oscillations for every slicing directions. Good re-
sults have been obtained without impairing subjective
quality (which can become even better from a perceptual
point of view). All this, with a good wavelet decompo-
sition, must be done on a given image modality, voxel
aspect ratio and resolution, to guarantee an e�cient and
reliable compression of biomedical volumes that can be
the basis for diagnostic coding.
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Figure 3: PSNR performance comparison between 2D(z)
and 3D coding (a), (b) and di�erent weighting of wavelet
coe�cients (c), (d) in order to obtain lower PSNR oscil-
lations.


