Let $C(d)$ be the capacity of the binary deletion channel with deletion probability $d$. It was proved by Drinea and Mitzenmacher that, for all $d$, $C(d)/(1-d)\geq 0.1185 $. Fertonani and Duman recently showed that $\limsup_{d\to 1}C(d)/(1-d)\leq 0.49$. In this paper, it is proved that $\lim_{d\to 1}C(d)/(1-d)$ exists and is equal to $\inf_{d}C(d)/(1-d)$. This result suggests the conjecture that the curve $C(d)$ my be convex in the interval $d\in [0,1]$. Furthermore, using currently known bounds for $C(d)$, it leads to the upper bound $\lim_{d\to 1}C(d)/(1-d)\leq 0.4143$.

A New Bound on the Capacity of the Binary Deletion Channel with High Deletion Probabilities

DALAI, Marco
2011-01-01

Abstract

Let $C(d)$ be the capacity of the binary deletion channel with deletion probability $d$. It was proved by Drinea and Mitzenmacher that, for all $d$, $C(d)/(1-d)\geq 0.1185 $. Fertonani and Duman recently showed that $\limsup_{d\to 1}C(d)/(1-d)\leq 0.49$. In this paper, it is proved that $\lim_{d\to 1}C(d)/(1-d)$ exists and is equal to $\inf_{d}C(d)/(1-d)$. This result suggests the conjecture that the curve $C(d)$ my be convex in the interval $d\in [0,1]$. Furthermore, using currently known bounds for $C(d)$, it leads to the upper bound $\lim_{d\to 1}C(d)/(1-d)\leq 0.4143$.
2011
9781457705960
File in questo prodotto:
File Dimensione Formato  
D_ISIT_2011.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 171.25 kB
Formato Adobe PDF
171.25 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/91504
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact