We consider the problem of learning heuristics for numeric planning domains, using Graph Neural Networks. The problem has been approached multiple times, from different perspectives and with varying results for classical planning, but is relatively new for numeric planning. The goal is to extend the work proposed by Stalberg, ̇ Bonet, and Geffner [1] to handle numeric planning problems.

Learning Heuristics with Graph Neural Networks for Numeric Planning: A Preliminary Study

Borelli V.;Gerevini A. E.;Scala E.;Serina I.
2024-01-01

Abstract

We consider the problem of learning heuristics for numeric planning domains, using Graph Neural Networks. The problem has been approached multiple times, from different perspectives and with varying results for classical planning, but is relatively new for numeric planning. The goal is to extend the work proposed by Stalberg, ̇ Bonet, and Geffner [1] to handle numeric planning problems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/632980
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact