The Laser Powder Bed Fusion (LPBF) is an Additive Manufacturing (AM) technology suitable to produce almost free-form metallic components. At Legnaro National Laboratories (LNL) of the Italian National Institute for Nuclear Physics (INFN), the LPBF process was recently used to produce parts of the Forced Electron Beam Induced Arc Discharge (FEBIAD) ion source for the SPES Isotope Separation On-Line (ISOL) facility. In this work are presented the feasibility assessment and production steps of tantalum cathodes produced via AM; in addition, the results concerning both the dimensional-geometrical measurements and the preliminary high-temperature test are reported.

Additively manufactured tantalum cathode for FEBIAD type ion sources: production, geometric measurements, and high temperature test

Girotto, A
;
Bodini, I;Paderno, D;Villa, V;
2024-01-01

Abstract

The Laser Powder Bed Fusion (LPBF) is an Additive Manufacturing (AM) technology suitable to produce almost free-form metallic components. At Legnaro National Laboratories (LNL) of the Italian National Institute for Nuclear Physics (INFN), the LPBF process was recently used to produce parts of the Forced Electron Beam Induced Arc Discharge (FEBIAD) ion source for the SPES Isotope Separation On-Line (ISOL) facility. In this work are presented the feasibility assessment and production steps of tantalum cathodes produced via AM; in addition, the results concerning both the dimensional-geometrical measurements and the preliminary high-temperature test are reported.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/628506
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact