This study introduces a model predictive control methodology to determine optimal measures for mitigating air pollution, assisting Local Authorities in policy development. Anchored in an auto-regressive model, it analyzes dynamic air quality patterns over a defined timeframe using daily observed pollutant concentration, meteorological variables, and estimated emission data. Employing model predictive control methodology, the approach aims to optimize daily emission reductions. Evaluated in Milan, a heavily polluted European city, the findings highlight the methodology's potential as a robust tool for Local Authorities, enabling informed decisions in crafting efficient air quality management strategies, in the specific context of NO2.

A model predictive control application for air quality management

Sangiorgi, L.;Carnevale, C.;De Nardi, S.;Raccagni, S.
2024-01-01

Abstract

This study introduces a model predictive control methodology to determine optimal measures for mitigating air pollution, assisting Local Authorities in policy development. Anchored in an auto-regressive model, it analyzes dynamic air quality patterns over a defined timeframe using daily observed pollutant concentration, meteorological variables, and estimated emission data. Employing model predictive control methodology, the approach aims to optimize daily emission reductions. Evaluated in Milan, a heavily polluted European city, the findings highlight the methodology's potential as a robust tool for Local Authorities, enabling informed decisions in crafting efficient air quality management strategies, in the specific context of NO2.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/619486
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact