Photogrammetric applications nowadays envisage the use of more and more low-cost cameras such as those equipped on commercial UAV platforms. Typically, these low-grade cameras suffer from extreme radial distortion and strong vignetting among other defects. This, initiated a trend among the low-cost cameras’ manufacturers to try to hide the camera defects by applying software pre-corrections to the images. These Built-In Correction Profiles gets applied to both the JPG files, directly in-camera, and usually to the raw files as well, through the opcode functions of the DNG standard. In this paper we rise this issue that is still under-reported in the literature and further assess the accuracy implication of applying or discarding the Built-In Correction Profile in the scenario of UAV mapping. We tested the commercial UAV DJI Phantom 4 Pro v2 in a calibration environment and a field test to compare the performance of pre-corrected versus uncorrected images. In our tests, processing the original uncorrected images led to improved IO calibration and reduced bowing effect in the field test.

BUILT-IN LENS CORRECTION PROFILES IN LOW-COST CAMERAS: AN ISSUE FOR PHOTOGRAMMETRIC APPLICATIONS?

luca perfetti
;
francesco fassi;giorgio vassena
2024-01-01

Abstract

Photogrammetric applications nowadays envisage the use of more and more low-cost cameras such as those equipped on commercial UAV platforms. Typically, these low-grade cameras suffer from extreme radial distortion and strong vignetting among other defects. This, initiated a trend among the low-cost cameras’ manufacturers to try to hide the camera defects by applying software pre-corrections to the images. These Built-In Correction Profiles gets applied to both the JPG files, directly in-camera, and usually to the raw files as well, through the opcode functions of the DNG standard. In this paper we rise this issue that is still under-reported in the literature and further assess the accuracy implication of applying or discarding the Built-In Correction Profile in the scenario of UAV mapping. We tested the commercial UAV DJI Phantom 4 Pro v2 in a calibration environment and a field test to compare the performance of pre-corrected versus uncorrected images. In our tests, processing the original uncorrected images led to improved IO calibration and reduced bowing effect in the field test.
File in questo prodotto:
File Dimensione Formato  
isprs-archives-XLVIII-2-W4-2024-349-2024.pdf

accesso aperto

Tipologia: Full Text
Licenza: Dominio pubblico
Dimensione 4.56 MB
Formato Adobe PDF
4.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/592646
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact