A high-order Discontinuous Galerkin (DG) solver is assessed in the computation of the flow through an Organic Rankine Cycle turbine nozzle and stage. The flow features are predicted with a RANS (Reynolds averaged Navier-Stoke) approach and the k-log(ω) turbulence model in a multi reference frame, where interfaces between fixed and rotating zones are treated with a mixing plane approach, and non reflecting boundary conditions are used. Primitive variables based on pressure and temperature logarithms are adopted to ensure non-negative thermodynamic variables at a discrete level. The fluid can be modeled with the polytropic ideal gas law and the Peng-Robinson equation of state.
DEVELOPMENT OF A DISCONTINUOUS GALERKIN SOLVER FOR THE SIMULATION OF TURBINE STAGES
Ghidoni A.;Mantecca E.;Noventa G.;Rebay S.;
2022-01-01
Abstract
A high-order Discontinuous Galerkin (DG) solver is assessed in the computation of the flow through an Organic Rankine Cycle turbine nozzle and stage. The flow features are predicted with a RANS (Reynolds averaged Navier-Stoke) approach and the k-log(ω) turbulence model in a multi reference frame, where interfaces between fixed and rotating zones are treated with a mixing plane approach, and non reflecting boundary conditions are used. Primitive variables based on pressure and temperature logarithms are adopted to ensure non-negative thermodynamic variables at a discrete level. The fluid can be modeled with the polytropic ideal gas law and the Peng-Robinson equation of state.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.