Recent advances in biosensing analytical platforms have brought relevant outcomes for novel diagnostic and therapy-oriented applications. In this context, hydrogels have emerged as appealing matrices to locally confine biomolecules onto sensing surfaces under solution mimetic conditions, preserving their structural integrity and function. Here, we describe the application of a self-assembling peptide hydrogel as a suitable matrix for 3D microarray bioassays. The hydrogel is printable and self-adhesive and allows for fast analyte diffusion. As a showcase example, we describe its application in a diagnostic immunoassay for the detection of arbovirus infection.
Self-Assembling Peptide Hydrogels for 3D Microarrays
Bergamaschi G.;Frigerio R.;Cretich M.;
2021-01-01
Abstract
Recent advances in biosensing analytical platforms have brought relevant outcomes for novel diagnostic and therapy-oriented applications. In this context, hydrogels have emerged as appealing matrices to locally confine biomolecules onto sensing surfaces under solution mimetic conditions, preserving their structural integrity and function. Here, we describe the application of a self-assembling peptide hydrogel as a suitable matrix for 3D microarray bioassays. The hydrogel is printable and self-adhesive and allows for fast analyte diffusion. As a showcase example, we describe its application in a diagnostic immunoassay for the detection of arbovirus infection.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.