This contribution is focused on features’ definition for the outcome prediction of matches of NBA basketball championship. It is shown how models based on one a single feature (Elo rating or the relative victory frequency) can have a quality of fit better than models using box-score predictors (e.g. the Four Factors). Features have been ex ante calculated for a dataset containing data of 16 NBA regular seasons, paying particular attention to home court factor. Models have been produced via Deep Learning, using cross validation.

Feature definition for NBA result prediction through Deep Learning

m. migliorati
;
e. brentari
2022-01-01

Abstract

This contribution is focused on features’ definition for the outcome prediction of matches of NBA basketball championship. It is shown how models based on one a single feature (Elo rating or the relative victory frequency) can have a quality of fit better than models using box-score predictors (e.g. the Four Factors). Features have been ex ante calculated for a dataset containing data of 16 NBA regular seasons, paying particular attention to home court factor. Models have been produced via Deep Learning, using cross validation.
2022
978-88-94593-35-8
File in questo prodotto:
File Dimensione Formato  
short_ann.pdf

accesso aperto

Descrizione: short paper
Tipologia: Documento in Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 90.19 kB
Formato Adobe PDF
90.19 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/554915
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact