With the advent of 3D printing, it is now possible to produce any part or system with an approach than makes design much deeply interlaced with production. In this scenario, CAE has gained power thanks to the possibility of thinking and then manufacture ideas that go well beyond what was possible in the past. This design approach is perfectly suitable to push forward mould conformal cooling performance. In this work, a coupling of CAD, CFD and 3D printing supported by experimental tests was applied to define a design procedure for conformal cooling channels. In particular, cooling channels for a mould were engineered via CAD, then tested via CFD and, after an initial optimization procedure, the chosen design was 3D printed in specimens suitable to be mounted on a heat exchanger (HX) experimental test rig that was especially adapted for the scope. Fluids temperature, volume flow rates and heat transfer performance were measured. A feedback loop was considered to link measurements and channels redesign. Results together with design and testing procedures are reported and commented.

A methodology for mould conformal cooling channels optimization exploiting 3D printing

Tomasoni D.;Giorleo L.;
2021-01-01

Abstract

With the advent of 3D printing, it is now possible to produce any part or system with an approach than makes design much deeply interlaced with production. In this scenario, CAE has gained power thanks to the possibility of thinking and then manufacture ideas that go well beyond what was possible in the past. This design approach is perfectly suitable to push forward mould conformal cooling performance. In this work, a coupling of CAD, CFD and 3D printing supported by experimental tests was applied to define a design procedure for conformal cooling channels. In particular, cooling channels for a mould were engineered via CAD, then tested via CFD and, after an initial optimization procedure, the chosen design was 3D printed in specimens suitable to be mounted on a heat exchanger (HX) experimental test rig that was especially adapted for the scope. Fluids temperature, volume flow rates and heat transfer performance were measured. A feedback loop was considered to link measurements and channels redesign. Results together with design and testing procedures are reported and commented.
File in questo prodotto:
File Dimensione Formato  
2021 - A-methodology-for-mould-conformal-cooling-channels-optimization-exploiting-3D-printing.pdf

accesso aperto

Tipologia: Full Text
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/550801
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact