The limited availability of resources makes the resource allocation strategy a pivotal aspect for every clinical department. Allocation is usually done on the basis of a workload estimation, which is performed by human experts. Experts have to dedicate a significant amount of time to the workload estimation, and the usefulness of estimations depends on the expert’s ability to understand very different conditions and situations. Machine learning-based predictors can help in reduce the burden on human experts, and can provide some guarantees at least in terms of repeatability of the delivered performance. However, it is unclear how good their estimations would be, compared to those of experts. In this paper we address this question by exploiting 6 algorithms for estimating the workload of future activities of a real-world department. Results suggest that this is a promising avenue for future investigations aimed to optimising the use of resources of clinical departments.

An empirical analysis of predictors for workload estimation in healthcare

Gatta R.
;
Vallati M.
;
Pirola I.;Cappelli C.;Castellano M.
2020-01-01

Abstract

The limited availability of resources makes the resource allocation strategy a pivotal aspect for every clinical department. Allocation is usually done on the basis of a workload estimation, which is performed by human experts. Experts have to dedicate a significant amount of time to the workload estimation, and the usefulness of estimations depends on the expert’s ability to understand very different conditions and situations. Machine learning-based predictors can help in reduce the burden on human experts, and can provide some guarantees at least in terms of repeatability of the delivered performance. However, it is unclear how good their estimations would be, compared to those of experts. In this paper we address this question by exploiting 6 algorithms for estimating the workload of future activities of a real-world department. Results suggest that this is a promising avenue for future investigations aimed to optimising the use of resources of clinical departments.
2020
978-3-030-50370-3
978-3-030-50371-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/546268
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact