Thanks to its ability to offer a time-oriented perspective on the clinical events that define the patient’s path of care, Process Mining (PM) is assuming an emerging role in clinical data analytics. PM’s ability to exploit time-series data and to build processes without any a priori knowledge suggests interesting synergies with the most common statistical analyses in healthcare, in particular survival analysis. In this work we demonstrate contributions of our process-oriented approach in analyzing a real-world retrospective dataset of patients treated for advanced melanoma at the Lausanne University Hospital. Addressing the clinical questions raised by our oncologists, we integrated PM in almost all the steps of a common statistical analysis. We show: (1) how PM can be leveraged to improve the quality of the data (data cleaning/pre-processing), (2) how PM can provide efficient data visualizations that support and/or suggest clinical hypotheses, also allowing to check the consistency between real and expected processes (descriptive statistics), and (3) how PM can assist in querying or re-expressing the data in terms of pre-defined reference workflows for testing survival differences among sub-cohorts (statistical inference). We exploit a rich set of PM tools for querying the event logs, inspecting the processes using statistical hypothesis testing, and performing conformance checking analyses to identify patterns in patient clinical paths and study the effects of different treatment sequences in our cohort.

A Process Mining Approach to Statistical Analysis: Application to a Real-World Advanced Melanoma Dataset

Gatta R.;
2021-01-01

Abstract

Thanks to its ability to offer a time-oriented perspective on the clinical events that define the patient’s path of care, Process Mining (PM) is assuming an emerging role in clinical data analytics. PM’s ability to exploit time-series data and to build processes without any a priori knowledge suggests interesting synergies with the most common statistical analyses in healthcare, in particular survival analysis. In this work we demonstrate contributions of our process-oriented approach in analyzing a real-world retrospective dataset of patients treated for advanced melanoma at the Lausanne University Hospital. Addressing the clinical questions raised by our oncologists, we integrated PM in almost all the steps of a common statistical analysis. We show: (1) how PM can be leveraged to improve the quality of the data (data cleaning/pre-processing), (2) how PM can provide efficient data visualizations that support and/or suggest clinical hypotheses, also allowing to check the consistency between real and expected processes (descriptive statistics), and (3) how PM can assist in querying or re-expressing the data in terms of pre-defined reference workflows for testing survival differences among sub-cohorts (statistical inference). We exploit a rich set of PM tools for querying the event logs, inspecting the processes using statistical hypothesis testing, and performing conformance checking analyses to identify patterns in patient clinical paths and study the effects of different treatment sequences in our cohort.
2021
978-3-030-72692-8
978-3-030-72693-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/546262
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 1
social impact