In this paper it is shown how to describe any finite-energy continuous or discrete signal through an ordered set of positions to uniquely represent it. This is obtained by designing an iterative decomposition through a series of mirror operations around those positions. The purpose is to find at any step of the decomposition the location that provides for the maximum decoupling between the even and odd components of the signal with respect to it. The algorithm can then be iterated at infinity determining a sequence of positions. The per location information determines the optimal energy decoupling strategy at each stage providing remarkable sparsity in the representation. Thanks to the sparsity of the resulting representation, experimental simulations demonstrate superior approximation capabilities of this proposed non-linear mirror transform.

Iterative Mirror Decomposition for Signal Representation

Guerrini F.
Writing – Original Draft Preparation
;
Gnutti A.
Membro del Collaboration Group
;
Leonardi R.
Supervision
2019-01-01

Abstract

In this paper it is shown how to describe any finite-energy continuous or discrete signal through an ordered set of positions to uniquely represent it. This is obtained by designing an iterative decomposition through a series of mirror operations around those positions. The purpose is to find at any step of the decomposition the location that provides for the maximum decoupling between the even and odd components of the signal with respect to it. The algorithm can then be iterated at infinity determining a sequence of positions. The per location information determines the optimal energy decoupling strategy at each stage providing remarkable sparsity in the representation. Thanks to the sparsity of the resulting representation, experimental simulations demonstrate superior approximation capabilities of this proposed non-linear mirror transform.
2019
978-1-4799-8131-1
File in questo prodotto:
File Dimensione Formato  
ICASSP19_CR.pdf

accesso aperto

Descrizione: Articolo principale - Preprint
Tipologia: Full Text
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 441.5 kB
Formato Adobe PDF
441.5 kB Adobe PDF Visualizza/Apri
08683203.pdf

solo utenti autorizzati

Descrizione: Articolo principale - pubblicato con copyright
Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 461.53 kB
Formato Adobe PDF
461.53 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/540295
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact