This paper investigates the capability of a surrogate-based optimization technique for the fast and robust design of centrifugal pumps. The centrifugal pump considered in this work is designed for automotive cooling system and consists of an impeller and a volute. A fully three-dimensional geometry parametrization based on Bézier surfaces for the impeller and the volute is presented. The optimization strategy is based only on open-source software (with the exception of the mesh generation process), i.e. Scilab for the geometric parametrization, OpenFOAM for the CFD simulations and DAKOTA for the optimization. To assess the potential and robustness of the proposed methodology, the initial geometry was chosen very far from the optimum design, having an impeller with straight blades. The operating conditions have been provided by the Italian company Industrie Saleri Italo S.p.A. and are typical of a Diesel engine.
Surrogate-Based Shape Optimization of Centrifugal Pumps for Automotive Engine Cooling Systems
Fracassi A.;Noventa G.;Ghidoni A.;Rebay S.
2021-01-01
Abstract
This paper investigates the capability of a surrogate-based optimization technique for the fast and robust design of centrifugal pumps. The centrifugal pump considered in this work is designed for automotive cooling system and consists of an impeller and a volute. A fully three-dimensional geometry parametrization based on Bézier surfaces for the impeller and the volute is presented. The optimization strategy is based only on open-source software (with the exception of the mesh generation process), i.e. Scilab for the geometric parametrization, OpenFOAM for the CFD simulations and DAKOTA for the optimization. To assess the potential and robustness of the proposed methodology, the initial geometry was chosen very far from the optimum design, having an impeller with straight blades. The operating conditions have been provided by the Italian company Industrie Saleri Italo S.p.A. and are typical of a Diesel engine.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.