Radiological reports are a valuable source of textual information, which can be exploited to improve clinical care and to support research. Such information can be extracted and put into a structured form using machine learning techniques. Some of them rely not only on the classification labels but also on the manual annotation of relevant snippets, which is a time consuming job and requires domain experts. In this paper, we apply deep learning techniques and in particular Long Short Term Memory (LSTM) networks to perform such a task relying only on the classification labels. We focus on the classification of chest computed tomography reports in Italian according to a classification schema proposed for this task by the radiologists of Spedali Civili di Brescia. Each report is classified according to such schema using a combination of neural network classifiers. The resulting system is a novel classification system, which we compare to a previous system based on standard machine learning techniques which used annotations of relevant snippets.
Deep learning for classification of radiology reports with a hierarchical schema
Putelli L.;Gerevini A. E.;Olivato M.;Serina I.
2020-01-01
Abstract
Radiological reports are a valuable source of textual information, which can be exploited to improve clinical care and to support research. Such information can be extracted and put into a structured form using machine learning techniques. Some of them rely not only on the classification labels but also on the manual annotation of relevant snippets, which is a time consuming job and requires domain experts. In this paper, we apply deep learning techniques and in particular Long Short Term Memory (LSTM) networks to perform such a task relying only on the classification labels. We focus on the classification of chest computed tomography reports in Italian according to a classification schema proposed for this task by the radiologists of Spedali Civili di Brescia. Each report is classified according to such schema using a combination of neural network classifiers. The resulting system is a novel classification system, which we compare to a previous system based on standard machine learning techniques which used annotations of relevant snippets.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.