We investigate the enhancement of second-harmonic generation in cylindrical GaAs nanowires. Although these nanostructures confine light in two dimensions, power conversion efficiencies on the order of 10-5 with a pump peak intensity of ~1 GW/cm2 are possible if the pump and the second-harmonic fields are coupled to the Mie-type resonances of the nanowire. We identify a large range of nanowire radii in which a double-resonance condition, i.e., both the pump and the second-harmonic fields excite normal modes of the nanowire, induces a high-quality-factor peak of conversion efficiency. We show that second-harmonic light can be scattered with large efficiency even if the second-harmonic photon energy is larger than 1.42 eV, i.e., the electronic bandgap of GaAs, above which the material is considered opaque. Finally, we evaluate the efficiency of one-photon absorption of second-harmonic light and find that resonant GaAs nanowires absorb second-harmonic light in the near-field region almost at the same rate at which they radiate second-harmonic light in the far-field region.

Second-Harmonic generation in Mie-resonant GaAs nanowires

de Ceglia D.;Carletti L.;De Angelis C.;
2019-01-01

Abstract

We investigate the enhancement of second-harmonic generation in cylindrical GaAs nanowires. Although these nanostructures confine light in two dimensions, power conversion efficiencies on the order of 10-5 with a pump peak intensity of ~1 GW/cm2 are possible if the pump and the second-harmonic fields are coupled to the Mie-type resonances of the nanowire. We identify a large range of nanowire radii in which a double-resonance condition, i.e., both the pump and the second-harmonic fields excite normal modes of the nanowire, induces a high-quality-factor peak of conversion efficiency. We show that second-harmonic light can be scattered with large efficiency even if the second-harmonic photon energy is larger than 1.42 eV, i.e., the electronic bandgap of GaAs, above which the material is considered opaque. Finally, we evaluate the efficiency of one-photon absorption of second-harmonic light and find that resonant GaAs nanowires absorb second-harmonic light in the near-field region almost at the same rate at which they radiate second-harmonic light in the far-field region.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/528512
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
social impact