The objective of the paper is to revisit a key mathematical technology within the theory of stochastic approximation in a Markovian framework, elaborated in detail in Benveniste et al. (1990): the existence, uniqueness and Lipschitz-continuity of the solutions of a parameter-dependent Poisson equation. The starting point of our investigation is a relatively new, elegant stability theory for Markov processes developed by Hairer and Mattingly (2011). The paper provides a transparent analysis of parameter-dependent Poisson equations with convenient conditions. The application of our results for the ODE analysis of stochastic approximation in a Markovian framework is the subject of a forthcoming paper.

Parameter-Dependent Poisson Equations: Tools for Stochastic Approximation in a Markovian Framework*

Care, Algo;
2019-01-01

Abstract

The objective of the paper is to revisit a key mathematical technology within the theory of stochastic approximation in a Markovian framework, elaborated in detail in Benveniste et al. (1990): the existence, uniqueness and Lipschitz-continuity of the solutions of a parameter-dependent Poisson equation. The starting point of our investigation is a relatively new, elegant stability theory for Markov processes developed by Hairer and Mattingly (2011). The paper provides a transparent analysis of parameter-dependent Poisson equations with convenient conditions. The application of our results for the ODE analysis of stochastic approximation in a Markovian framework is the subject of a forthcoming paper.
2019
978-1-7281-1398-2
File in questo prodotto:
File Dimensione Formato  
09029383.pdf

gestori archivio

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 288.01 kB
Formato Adobe PDF
288.01 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/528152
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact