A continuous multi-utility fully represents a not necessarily total preorder on a topological space by means of a family of continuous increasing functions. While it is very attractive for obvious reasons, and therefore it has been applied in different contexts, such as expected utility for example, it is nevertheless very restrictive. In this paper we first present some general characterizations of the existence of a continuous order-preserving function, and respectively a continuous multi-utility representation, for a preorder on a topological space. We then illustrate the restrictiveness associated to the existence of a continuous multi-utility representation, by referring both to appropriate continuity conditions which must be satisfied by a preorder admitting this kind of representation, and to the Hausdorff property of the quotient order topology corresponding to the equivalence relation induced by the preorder. We prove a very restrictive result, which may concisely described as follows: the continuous multi-utility representability of all closed (or equivalently weakly continuous) preorders on a topological space is equivalent to the requirement according to which the quotient topology with respect to the equivalence corresponding to the coincidence of all continuous functions is discrete.
Continuity and continuous multi-utility representations of nontotal preorders: some considerations concerning restrictiveness
Magalì Zuanon;Gianni Bosi
2020-01-01
Abstract
A continuous multi-utility fully represents a not necessarily total preorder on a topological space by means of a family of continuous increasing functions. While it is very attractive for obvious reasons, and therefore it has been applied in different contexts, such as expected utility for example, it is nevertheless very restrictive. In this paper we first present some general characterizations of the existence of a continuous order-preserving function, and respectively a continuous multi-utility representation, for a preorder on a topological space. We then illustrate the restrictiveness associated to the existence of a continuous multi-utility representation, by referring both to appropriate continuity conditions which must be satisfied by a preorder admitting this kind of representation, and to the Hausdorff property of the quotient order topology corresponding to the equivalence relation induced by the preorder. We prove a very restrictive result, which may concisely described as follows: the continuous multi-utility representability of all closed (or equivalently weakly continuous) preorders on a topological space is equivalent to the requirement according to which the quotient topology with respect to the equivalence corresponding to the coincidence of all continuous functions is discrete.File | Dimensione | Formato | |
---|---|---|---|
BosiZuanonlibroMehtaRevised.pdf
gestori archivio
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
212.73 kB
Formato
Adobe PDF
|
212.73 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.