Let $X_n(K)$ be a building of Coxeter type $X_n = A_n$ or $X_n = D_n$ defined over a given division ring $K$ (a field when $X_n = D_n$). For a non-connected set $J$ of nodes of the diagram $X_n$, let $Gamma(K) = Gr_J(X_n(K))$ be the $J$-Grassmannian of $X_n(K)$. We prove that $Gamma(K)$ cannot be generated over any proper sub-division ring $K_0$ of $K$. As a consequence, the generating rank of $Gamma(K)$ is infinite when $K$ is not finitely generated. In particular, if $K$ is the algebraic closure of a finite field of prime order then the generating rank of $Gr_1,n(A_n(K))$ is infinite, although its embedding rank is either $(n+1)^2-1$ or $(n+1)^2$.

Generation of $J$-Grassmannians of buildings of type $A_n$ and $D_n$ with $J$ a non-connected set of types

Luca Giuzzi
;
2019-01-01

Abstract

Let $X_n(K)$ be a building of Coxeter type $X_n = A_n$ or $X_n = D_n$ defined over a given division ring $K$ (a field when $X_n = D_n$). For a non-connected set $J$ of nodes of the diagram $X_n$, let $Gamma(K) = Gr_J(X_n(K))$ be the $J$-Grassmannian of $X_n(K)$. We prove that $Gamma(K)$ cannot be generated over any proper sub-division ring $K_0$ of $K$. As a consequence, the generating rank of $Gamma(K)$ is infinite when $K$ is not finitely generated. In particular, if $K$ is the algebraic closure of a finite field of prime order then the generating rank of $Gr_1,n(A_n(K))$ is infinite, although its embedding rank is either $(n+1)^2-1$ or $(n+1)^2$.
2019
File in questo prodotto:
File Dimensione Formato  
Non-generation-5.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 361.62 kB
Formato Adobe PDF
361.62 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/526636
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact