Traffic calming devices on urban streets, such as elevated pedestrian crossings, speed bumps and roundabouts, are increasingly used, therefore bus passengers on-board comfort assessment is an actual problem. In order to measure vibrational on-board comfort for public transport standing passengers related to traffic calming, an acquisition system called ASGCM (Autonomous System for Geo-referenced Comfort Measurements) has been developed, taking as a reference the European regulations on rail transports. Thanks to ASGCM, each measurement of vibration, on-ground velocity and acceleration is linked with geographical information resulting from a GPS, so a map of a comfort index, as well as statistical surveys and correlation between on-board comfort and traffic calming, can be directly obtained using a Geographic Information System (GIS), querying a centralized remote database developed ad-hoc. A large number of experimental tests has been performed in order to define a vibrational comfort index and to collect a large statistics that allows a significant comparison between different infrastructures and their characterization. The proposed technique can also be useful for diagnostics purposes, such as vehicles comparison and vehicle and road maintenance state monitoring
Techniques for on-board vibrational passenger comfort monitoring in public transport
Bodini I.;Lancini M.;Pasinetti S.;Vetturi D.
2013-01-01
Abstract
Traffic calming devices on urban streets, such as elevated pedestrian crossings, speed bumps and roundabouts, are increasingly used, therefore bus passengers on-board comfort assessment is an actual problem. In order to measure vibrational on-board comfort for public transport standing passengers related to traffic calming, an acquisition system called ASGCM (Autonomous System for Geo-referenced Comfort Measurements) has been developed, taking as a reference the European regulations on rail transports. Thanks to ASGCM, each measurement of vibration, on-ground velocity and acceleration is linked with geographical information resulting from a GPS, so a map of a comfort index, as well as statistical surveys and correlation between on-board comfort and traffic calming, can be directly obtained using a Geographic Information System (GIS), querying a centralized remote database developed ad-hoc. A large number of experimental tests has been performed in order to define a vibrational comfort index and to collect a large statistics that allows a significant comparison between different infrastructures and their characterization. The proposed technique can also be useful for diagnostics purposes, such as vehicles comparison and vehicle and road maintenance state monitoringFile | Dimensione | Formato | |
---|---|---|---|
IMEKO-TC10-2013-017.pdf
accesso aperto
Descrizione: Extended Abstract
Tipologia:
Full Text
Licenza:
Dominio pubblico
Dimensione
3.88 MB
Formato
Adobe PDF
|
3.88 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.