This paper presents a vision system for the in-line monitoring of laser welding. The system is based on a coaxial optical setup purposely chosen to guarantee robust detection of the joints and optimal acquisition of the melt pool region. Two procedures have been developed: The former focuses on keeping the laser head locked to the joint during the welding; the latter monitors the appearance of the keyhole region. The system feedbacks the joint position to the robot used to move the welding laser and monitors the penetration state of the laser. The goal is to achieve a continuous adaptation of the laser parameters (power., speed and focusing) to guarantee the weld quality. The developed algorithms have been designed to optimize the system performance in terms of the elaboration time and of accuracy and robustness of the detection. The overall architecture follows the Industrial Internet of Things approach, where vision is embedded, edge-based analysis is carried out, actuators are directly driven by the vision system, a latency-free transmission architecture allows interconnection as well as the possibility to remotely control multiple delocalized units.

In-Line Monitoring of Laser Welding Using a Smart Vision System

Pasinetti, Simone;Sansoni, Giovanna;Docchio, Franco
2018-01-01

Abstract

This paper presents a vision system for the in-line monitoring of laser welding. The system is based on a coaxial optical setup purposely chosen to guarantee robust detection of the joints and optimal acquisition of the melt pool region. Two procedures have been developed: The former focuses on keeping the laser head locked to the joint during the welding; the latter monitors the appearance of the keyhole region. The system feedbacks the joint position to the robot used to move the welding laser and monitors the penetration state of the laser. The goal is to achieve a continuous adaptation of the laser parameters (power., speed and focusing) to guarantee the weld quality. The developed algorithms have been designed to optimize the system performance in terms of the elaboration time and of accuracy and robustness of the detection. The overall architecture follows the Industrial Internet of Things approach, where vision is embedded, edge-based analysis is carried out, actuators are directly driven by the vision system, a latency-free transmission architecture allows interconnection as well as the possibility to remotely control multiple delocalized units.
2018
9781538624975
File in questo prodotto:
File Dimensione Formato  
32_Metroind2018_Welding.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Full Text
Licenza: DRM non definito
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/515480
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact