According to complexity science, the essence of a complex system is the emergence of unpredictable behavior from interaction among components. Loosely inspired by this idea, a diagnosis technique of a class of discrete-event systems, called complex active systems, is presented. A complex active system is a hierarchical graph, where each node is a network of communicating automata, called an active unit. Specific interaction patterns among automata within an active unit give rise to the occurrence of emergent events, which may affect the behavior of superior active units. This results in the stratification of the behavior of the complex active system, where each different stratum corresponds to a different abstraction level of the emergent behavior. As such, emergence is a peculiar property of a complex active system. To speed up the diagnosis task, model-based knowledge is compiled offline and exploited online by the diagnosis engine. The technique is sound and complete.

Knowledge compilation techniques for model-based diagnosis of complex active systems

Gian Franco Lamperti
;
Marina Zanella;
2018-01-01

Abstract

According to complexity science, the essence of a complex system is the emergence of unpredictable behavior from interaction among components. Loosely inspired by this idea, a diagnosis technique of a class of discrete-event systems, called complex active systems, is presented. A complex active system is a hierarchical graph, where each node is a network of communicating automata, called an active unit. Specific interaction patterns among automata within an active unit give rise to the occurrence of emergent events, which may affect the behavior of superior active units. This results in the stratification of the behavior of the complex active system, where each different stratum corresponds to a different abstraction level of the emergent behavior. As such, emergence is a peculiar property of a complex active system. To speed up the diagnosis task, model-based knowledge is compiled offline and exploited online by the diagnosis engine. The technique is sound and complete.
2018
978-3-319-99739-1
File in questo prodotto:
File Dimensione Formato  
Lamperti2018_Chapter_KnowledgeCompilationTechniques.pdf

gestori archivio

Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 760.78 kB
Formato Adobe PDF
760.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/509082
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact