Symmetry detection algorithms are enjoying a renovated interest in the scientific community, fueled by recent advancements in computer vision and computer graphics applications. This paper is inspired by recent efforts in building a symmetric object detection system in natural images. In particular, it is first shown how correlation can be a core operator that allows finding local reflection symmetry points in 1-D sequences that are optimal in an energetic sense. Then, the importance of 2-D correlation in natural images to correctly align the symmetric object axis is demonstrated. Using the correlation as described is crucial in boosting the performance of the system, as proven by the results on a standard dataset.

A normalized mirrored correlation measure for data symmetry detection

Gnutti, Alessandro
Methodology
;
Guerrini, Fabrizio
Methodology
;
Leonardi, Riccardo
Conceptualization
2017-01-01

Abstract

Symmetry detection algorithms are enjoying a renovated interest in the scientific community, fueled by recent advancements in computer vision and computer graphics applications. This paper is inspired by recent efforts in building a symmetric object detection system in natural images. In particular, it is first shown how correlation can be a core operator that allows finding local reflection symmetry points in 1-D sequences that are optimal in an energetic sense. Then, the importance of 2-D correlation in natural images to correctly align the symmetric object axis is demonstrated. Using the correlation as described is crucial in boosting the performance of the system, as proven by the results on a standard dataset.
2017
978-0-9928626-7-1
978-0-9928626-8-8
978-1-5386-0751-0
File in questo prodotto:
File Dimensione Formato  
GGL_EUSIPCO-2017_full-text.pdf

accesso aperto

Descrizione: GGL_EUSIPCO-2017_full-text
Tipologia: Full Text
Licenza: Creative commons
Dimensione 2.27 MB
Formato Adobe PDF
2.27 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/501662
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact