Symmetry detection algorithms are enjoying a renovated interest in the scientific community, fueled by recent advancements in computer vision and computer graphics applications. This paper is inspired by recent efforts in building a symmetric object detection system in natural images. In particular, it is first shown how correlation can be a core operator that allows finding local reflection symmetry points in 1-D sequences that are optimal in an energetic sense. Then, the importance of 2-D correlation in natural images to correctly align the symmetric object axis is demonstrated. Using the correlation as described is crucial in boosting the performance of the system, as proven by the results on a standard dataset.
A normalized mirrored correlation measure for data symmetry detection
Gnutti, AlessandroMethodology
;Guerrini, Fabrizio
Methodology
;Leonardi, RiccardoConceptualization
2017-01-01
Abstract
Symmetry detection algorithms are enjoying a renovated interest in the scientific community, fueled by recent advancements in computer vision and computer graphics applications. This paper is inspired by recent efforts in building a symmetric object detection system in natural images. In particular, it is first shown how correlation can be a core operator that allows finding local reflection symmetry points in 1-D sequences that are optimal in an energetic sense. Then, the importance of 2-D correlation in natural images to correctly align the symmetric object axis is demonstrated. Using the correlation as described is crucial in boosting the performance of the system, as proven by the results on a standard dataset.File | Dimensione | Formato | |
---|---|---|---|
GGL_EUSIPCO-2017_full-text.pdf
accesso aperto
Descrizione: GGL_EUSIPCO-2017_full-text
Tipologia:
Full Text
Licenza:
Creative commons
Dimensione
2.27 MB
Formato
Adobe PDF
|
2.27 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.