Developing an ability to classify ventricular fibrillation (VF) into cases where restoration of an organized electrical activity (ROEA) is achieved after the application of a defibrillatory shock, and telling these cases apart from cases where such a restoration does not happen, is of paramount importance to guide first-aid therapy in patients in cardiac arrest. Indeed, VF is a medical emergency of enormous proportions and it is one of the first causes of sudden death in a large range of population's age. In this article, we address this problem in the light of recent achievements in the field of machine learning and present results with the use of a new machine called GEM (Guaranteed Error Machine) applied to a group of patients with out-of-hospital cardiac arrest. While our results indicate that this methodology is promising, it remains a fact that this study is still at the outset, and by this article we also want to make the current state of the art available with the use of GEM to others and indicate what we believe are the research priorities for the near future. This is done in the belief that this important medical endeavor is better addressed by the cooperation of various teams, possibly carrying complementary expertise.

Ventricular defibrillation: Classification with G.E.M. and a roadmap for future investigations

Baronio, Fabio;Campi, Marco C.;Care, Algo;
2017-01-01

Abstract

Developing an ability to classify ventricular fibrillation (VF) into cases where restoration of an organized electrical activity (ROEA) is achieved after the application of a defibrillatory shock, and telling these cases apart from cases where such a restoration does not happen, is of paramount importance to guide first-aid therapy in patients in cardiac arrest. Indeed, VF is a medical emergency of enormous proportions and it is one of the first causes of sudden death in a large range of population's age. In this article, we address this problem in the light of recent achievements in the field of machine learning and present results with the use of a new machine called GEM (Guaranteed Error Machine) applied to a group of patients with out-of-hospital cardiac arrest. While our results indicate that this methodology is promising, it remains a fact that this study is still at the outset, and by this article we also want to make the current state of the art available with the use of GEM to others and indicate what we believe are the research priorities for the near future. This is done in the belief that this important medical endeavor is better addressed by the cooperation of various teams, possibly carrying complementary expertise.
2017
978-1-5090-2873-3
File in questo prodotto:
File Dimensione Formato  
08264054.pdf

gestori archivio

Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 571.27 kB
Formato Adobe PDF
571.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/501538
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 1
social impact