Many new symmetry detection algorithms have been recently developed, thanks to an interest revival on computational symmetry for computer graphics and computer vision applications. Notably, in 2013 the IEEE CVPR Conference organized a dedicated workshop and an accompanying symmetry detection competition. In this paper we propose an approach for symmetric object detection that is based both on the computation of a symmetry measure for each pixel and on saliency. The symmetry value is obtained as the energy balance of the even-odd decomposition of a patch w.r.t. each possible axis. The candidate symmetry axes are then identified through the localization of peaks along the direction perpendicular to each considered axis orientation. These found candidate axes are finally evaluated through a confidence measure that also allow removing redundant detected symmetries. The obtained results within the framework adopted in the aforementioned competition show significant performance improvement.

On reflection symmetry in natural images

Gnutti, Alessandro
Methodology
;
Guerrini, Fabrizio
Methodology
;
Leonardi, Riccardo
Conceptualization
2017-01-01

Abstract

Many new symmetry detection algorithms have been recently developed, thanks to an interest revival on computational symmetry for computer graphics and computer vision applications. Notably, in 2013 the IEEE CVPR Conference organized a dedicated workshop and an accompanying symmetry detection competition. In this paper we propose an approach for symmetric object detection that is based both on the computation of a symmetry measure for each pixel and on saliency. The symmetry value is obtained as the energy balance of the even-odd decomposition of a patch w.r.t. each possible axis. The candidate symmetry axes are then identified through the localization of peaks along the direction perpendicular to each considered axis orientation. These found candidate axes are finally evaluated through a confidence measure that also allow removing redundant detected symmetries. The obtained results within the framework adopted in the aforementioned competition show significant performance improvement.
2017
9781450353335
File in questo prodotto:
File Dimensione Formato  
GGL_CBMI-2017_post-print.pdf

accesso aperto

Descrizione: GGL_CBMI-2017_post-print
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 884.93 kB
Formato Adobe PDF
884.93 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/498875
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact