The objective of this study is to simulate tool wear in drilling of nickel-based alloys, in particular Inconel 718. When machining these kind of materials, the impact of the thermal and mechanical phenomena generated by tool wear on the surface integrity is of prime concern. For this reason, it important to study the influence of tool wear on tool life, on final part quality and on cutting force and power consumption. Tool wear is caused by several phenomena (adhesion, abrasion, erosion, diffusion, corrosion, fracture etc.) depending on selected cutting parameters (cutting velocity, feed rate, etc.). In some cases these wear mechanisms can be described by analytical models which are function of physical quantities involved in process (temperature, pressure and sliding velocity along the cutting surface).Usually, commercial FEM software allows to implement these tool wear models but without tool geometry update. To overcoming this limitation, a suitable subroutine considering tool geometry update was developed and implemented in SFTC DEFORM-3D FEA software to simulate tool wear in drilling of Inconel 718. A good agreement was obtained between the predicted and measured tool wear data.

FEM Simulation of Tool Wear in Drilling

Attanasio, A.;Faini, F.;
2017-01-01

Abstract

The objective of this study is to simulate tool wear in drilling of nickel-based alloys, in particular Inconel 718. When machining these kind of materials, the impact of the thermal and mechanical phenomena generated by tool wear on the surface integrity is of prime concern. For this reason, it important to study the influence of tool wear on tool life, on final part quality and on cutting force and power consumption. Tool wear is caused by several phenomena (adhesion, abrasion, erosion, diffusion, corrosion, fracture etc.) depending on selected cutting parameters (cutting velocity, feed rate, etc.). In some cases these wear mechanisms can be described by analytical models which are function of physical quantities involved in process (temperature, pressure and sliding velocity along the cutting surface).Usually, commercial FEM software allows to implement these tool wear models but without tool geometry update. To overcoming this limitation, a suitable subroutine considering tool geometry update was developed and implemented in SFTC DEFORM-3D FEA software to simulate tool wear in drilling of Inconel 718. A good agreement was obtained between the predicted and measured tool wear data.
File in questo prodotto:
File Dimensione Formato  
FEM simulation of tool wear in drilling.pdf

accesso aperto

Descrizione: Paper full text
Tipologia: Full Text
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 708.81 kB
Formato Adobe PDF
708.81 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/498439
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 31
social impact