The possibility to generate acoustic modes based on FPWs (Flexural Plate Waves) in a generic non-piezoelectric substrate for microfludic applications by means of piezoelectric actuators has been explored and described in this paper. The FPW acoustic modes are generated by means of actuators made of Lead Zirconate Titanate (PZT) layers with InterDigital Transducers (IDTs) screen-printed on alumina (Al2O3) substrate. The experimental results show that, by exciting the resonances of the actuators, circular vortex rotations are obtained in a fluid drop placed on the substrate between the IDTs. Micrometric particles dispersed in the drop allow to demonstrate that standing waves can be generated in the liquid obtaining particle accumulation along circular lines. These results suggest the possibility to employ the proposed actuators for fluid mixing and controlled positioning of dispersed particles.

Piezoelectric Actuators for In-Liquid Particle Manipulation in Microfluidic Applications

Marco Demori;Marco Baù;Simone Dalola;Marco Ferrari;Vittorio Ferrari
2017-01-01

Abstract

The possibility to generate acoustic modes based on FPWs (Flexural Plate Waves) in a generic non-piezoelectric substrate for microfludic applications by means of piezoelectric actuators has been explored and described in this paper. The FPW acoustic modes are generated by means of actuators made of Lead Zirconate Titanate (PZT) layers with InterDigital Transducers (IDTs) screen-printed on alumina (Al2O3) substrate. The experimental results show that, by exciting the resonances of the actuators, circular vortex rotations are obtained in a fluid drop placed on the substrate between the IDTs. Micrometric particles dispersed in the drop allow to demonstrate that standing waves can be generated in the liquid obtaining particle accumulation along circular lines. These results suggest the possibility to employ the proposed actuators for fluid mixing and controlled positioning of dispersed particles.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/498376
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact