In this work we present a free Web API for single and multi-text summarization. The summarization algorithm follows an extractive approach, thus selecting the most relevant sentences from a single document or a document set. It integrates in a novel pipeline different text analysis techniques - ranging from keyword and entity extraction, to topic modelling and sentence clustering - and gives SoA competitive results. The application, written in Python, supports as input both plain texts and Web URLs. The API is publicly accessible for free using the specific conference token [1] as described in the reference page [2]. The browser-based demo version, for summarization of single documents only, is publicly accessible at http://yonderlabs.com/demo.

A free Web API for single and multi-document summarization

MAURO, Massimo;BENINI, Sergio;ADAMI, Nicola;SIGNORONI, Alberto;LEONARDI, Riccardo;
2017-01-01

Abstract

In this work we present a free Web API for single and multi-text summarization. The summarization algorithm follows an extractive approach, thus selecting the most relevant sentences from a single document or a document set. It integrates in a novel pipeline different text analysis techniques - ranging from keyword and entity extraction, to topic modelling and sentence clustering - and gives SoA competitive results. The application, written in Python, supports as input both plain texts and Web URLs. The API is publicly accessible for free using the specific conference token [1] as described in the reference page [2]. The browser-based demo version, for summarization of single documents only, is publicly accessible at http://yonderlabs.com/demo.
2017
978-1-4503-5333-5
File in questo prodotto:
File Dimensione Formato  
CBMI2017-camera-ready.pdf

solo utenti autorizzati

Descrizione: camera ready
Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 605.69 kB
Formato Adobe PDF
605.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/494653
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 0
social impact