Organic electrochemical transistors (OECTs) are gaining significant interest for bioelectronic applications since they offer the unique combination of both electronic and ionic conduction and modulation [1,2]. OECTs are based on a conducting polymer channel and an electrolyte between the channel and the gate, which acts as the gating medium [3]. Currently, poly(3,4- ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is one of the most promising material choice for the conductive channel because it offers good electronic and ionic mobilities, stability, biocompatibility, and easy of fabrication processing [4]. In bioelectronic applications the electrolyte is an aqueous media, as for example a body fluid, PBS, or water with salts (NaCl, KCl, etc.). As a gate, OECTs can exploit both non-polarizable and polarizable electrodes. Ag/AgCl is typically used as non-polarizable electrode [1,4,5] whereas platinum and gold as polarizable electrodes [6]. While non-polarizable electrodes are extensively used for electrophysiological applications [5,7], polarizable electrodes can be an interesting opportunity for electrolyte-gated biosensors [8]. Here we propose a simple yet accurate model of OECTs operated with polarizable electrodes. The OECTs are fabricated on plastic foil. The PEDOT:PSS channel is inkjet printed, the electrolyte is a sodium-chloride water solution, and a gold electrode is used for the gate. The analysis provides guidelines for the development of high-performance low-cost electrolyte-gated biosensors based on OECTs. [1] X. Strakosas, M. Bongo, R. M. Owens. J. Appl. Polym. Sci. 132 (2015) 41735. [2] D. T. Simon, E. O. Gabrielsson, K. Tybrandt, M. Berggren. Chem. Rev. 116 (2016) 13009- 13041. [3] D. A. Bernards, G. G. Malliaras. Adv. Funct. Mater. 17 (2007) 3538–3544. [4] D. Khodagholy, J. Rivnay, M. Sessolo, M. Gurfinkel, P. Leleux, L. H. Jimison, E. Stavrinidou, T. Herve, S.Sanaur, R. M. Owens, G. G. Malliaras. Nat. Commun. 4 (2013) 2133. [5] P. Leleux, J. Rivnay, T. Lonjaret, J.-M. Badier, C. Bénar, T. Hervé, P. Chauvel, G. G. Malliaras. Adv. Healthcare Mater. 4 (2015) 142-147. [6] P. Lin, F. Yan, H. L. W. Chan. ACS Appl. Mater. Interfaces 2 (2010) 1637. [7] A. Campana, T. Cramer, D. T. Simon, M. Berggren, F. Biscarini. Adv. Mater. 26 (2014) 3874- 3878. [8] M. Y. Mulla, E. Tuccori, M. Magliulo, G. Lattanzi, G. Palazzo, K. Persaud, L. Torsi. Nat. Commun. 6 (2015) 6010.

Fabrication and Modelling of Organic Electrochemical Transistors Printed on Plastic Foil

TORRICELLI, Fabrizio
2017-01-01

Abstract

Organic electrochemical transistors (OECTs) are gaining significant interest for bioelectronic applications since they offer the unique combination of both electronic and ionic conduction and modulation [1,2]. OECTs are based on a conducting polymer channel and an electrolyte between the channel and the gate, which acts as the gating medium [3]. Currently, poly(3,4- ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is one of the most promising material choice for the conductive channel because it offers good electronic and ionic mobilities, stability, biocompatibility, and easy of fabrication processing [4]. In bioelectronic applications the electrolyte is an aqueous media, as for example a body fluid, PBS, or water with salts (NaCl, KCl, etc.). As a gate, OECTs can exploit both non-polarizable and polarizable electrodes. Ag/AgCl is typically used as non-polarizable electrode [1,4,5] whereas platinum and gold as polarizable electrodes [6]. While non-polarizable electrodes are extensively used for electrophysiological applications [5,7], polarizable electrodes can be an interesting opportunity for electrolyte-gated biosensors [8]. Here we propose a simple yet accurate model of OECTs operated with polarizable electrodes. The OECTs are fabricated on plastic foil. The PEDOT:PSS channel is inkjet printed, the electrolyte is a sodium-chloride water solution, and a gold electrode is used for the gate. The analysis provides guidelines for the development of high-performance low-cost electrolyte-gated biosensors based on OECTs. [1] X. Strakosas, M. Bongo, R. M. Owens. J. Appl. Polym. Sci. 132 (2015) 41735. [2] D. T. Simon, E. O. Gabrielsson, K. Tybrandt, M. Berggren. Chem. Rev. 116 (2016) 13009- 13041. [3] D. A. Bernards, G. G. Malliaras. Adv. Funct. Mater. 17 (2007) 3538–3544. [4] D. Khodagholy, J. Rivnay, M. Sessolo, M. Gurfinkel, P. Leleux, L. H. Jimison, E. Stavrinidou, T. Herve, S.Sanaur, R. M. Owens, G. G. Malliaras. Nat. Commun. 4 (2013) 2133. [5] P. Leleux, J. Rivnay, T. Lonjaret, J.-M. Badier, C. Bénar, T. Hervé, P. Chauvel, G. G. Malliaras. Adv. Healthcare Mater. 4 (2015) 142-147. [6] P. Lin, F. Yan, H. L. W. Chan. ACS Appl. Mater. Interfaces 2 (2010) 1637. [7] A. Campana, T. Cramer, D. T. Simon, M. Berggren, F. Biscarini. Adv. Mater. 26 (2014) 3874- 3878. [8] M. Y. Mulla, E. Tuccori, M. Magliulo, G. Lattanzi, G. Palazzo, K. Persaud, L. Torsi. Nat. Commun. 6 (2015) 6010.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/493939
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact